Discrete mean estimates and the Landau-Siegel zero

Yitang Zhang

Abstract

Let x be a real primitive character to the modulus D. It is proved that
L(1,x) > (log D)%%

where the implied constant is absolute and effectively computable.

In the proof, the lower bound for L(1,x) is first related to the distribution of zeros of
a family of Dirichlet L-functions in a certain region, and some results on the gaps between
consecutive zeros are derived. Then, by evaluating certain discrete means of the large sieve
type, a contradiction can be obtained if L(1, x) is too small.
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1. Introduction

Let x be a real primitive character to the modulus D. It is known that the Dirichlet
L-function L(s, x) has at most one real and simple zero p satisfying

1 —p < collog D)™

where ¢y > 0 is an absolute constant. Such a zero is called the Landau-Siegel zero. The
typical methods to determine zero-free regions for Dirichlet L-functions are unable to
eliminate the Landau-Siegel zero for an intrinsic reason.

The non-vanishing of L(s, x) near s = 1 is closely related to the lower bound for the
value of L(s, x) at s = 1. The well-known Siegel theorem [19] asserts that, for any € > 0,
there exists a positive number ' (¢) such that

L(1,x) > Ci(e)D=.
This implies, for any € > 0, that there exists a positive number Cy(g) such that
L(o,x) #0 if  o>1-Cye)D7".

However, the process of Siegel’s proof essentially involves certain assumptions, such as the
existence of a real primitive character ¥ (mod D) with L(s, {) vanishing on the interval
[1—e,1) (see [8]), and the constant C(¢) relies on the unknown modulus D necessarily
This makes the result of Siegel’s theorem entirely ineffective.

It is known (see [9]) that the non-existence of the Landau-Siegel zero implies

L(1,x) > (log D). (1.1)
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In the case x(—1) = —1, Goldfeld [10] and Gross and Zagier [12] proved that
L(1,x) 3 D~*(log D)'~*

for any € > 0, where the implied constant is effectively computable. This result surpasses
the trivial bound L(1, x) > D~'/? and solves Gauss’ class number problem for imaginary
quadratic fields. Granville and Stark [11] proved that the uniform abc conjecture for
number fields implies (1.1) when x(—1) = —1.

The main result of this paper is

Theorem 1 If x is a real primitive character to the modulus D, then
L(1,%) > ¢1(log D)~ 2022

where ¢; > 0 is an absolute, effectively computable constant.
As a direct consequence of Theorem 1 we have

Theorem 2 If x is a real primitive character to the modulus D, then
L(o,x) #0

for

o >1—cy(log D)~20*
where co > 0 is an absolute, effectively computable constant.

It is possible to replace the exponent —2022 in Theorem 1 by a larger (negative)
value if the current arguments are modified, but we will not discuss it in this paper. On
the other hand, it seems that the lower bound (1.1) can not be achieved by the present
methods.

Acknowledgements. The basic ideas of the present proof were initially formed during
my visit to the Institute for Advanced Study in the spring of 2014. I thank the Institute
for Advanced Study for providing me with excellent conditions. I also thank Professor
Peter Sarnak for his encouragement.

2. Notation and outline of the proof

Notation and conventions.

Throughout, t, u, v, z and o denote real variables; x and y denote positive real
variables; s and w denote the complex variables s = o+t and w = u-+1v; d, h, j, k, [, m,
n and r denote natural numbers, while p and ¢ denote primes; the arithmetic functions



w(n) and @(n) are defined as usual, while 7(n) denotes the k-fold divisor function. Let
denote the Dirichlet convolution of arithmetic functions. Let e(s) = exp{2mis}. We write

Z and Z

n (n,k)=1
for . -
Z and Z
n=1 n=1
(n,k)=1

respectively. Let [, ) denote an integration from z — ico to z 4 700.
We let y denote a real primitive character to the modulus D with D greater than a
sufficiently large and effectively computable number. Write

L =logD. (2.1)

Let ¢ denote a positive, effectively computable and absolute constant, not necessarily
the same at each occurrence. All implied constants, unless specified, are absolute and
effectively computable. In this paper, an error term is usually given in the form that is
small enough for our purpose, although shaper estimates are possible.

For any Dirichlet character € to the modulus k, let 7(0) denote the Gauss sum

@)= Y Ola)e(a/k)

a( mod k)
(thus we shall not write 7 for 75, the ordinary divisor function). The expressions
/ *
SR ST
0( mod k) 0( mod k) 0( mod k)

denote, respectively, a sum over all §(mod k), a sum over all non-principal #(mod k), and
a sum over all primitive #(mod k). Let ¥ denote the principle character (mod k).
In case f(mod k) is a primitive character, the functional equation for L(s, ) is

L(s,0) = Z(s,0)L(1 — s,0), (2.2)

where

if (—1) = 1, and

1
Z(5,0) = —ir(0)r 12 r<2 - 3>r<1 ! S)
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if 0(—1) = —1. When t is large, it is convenient to use an asymptotic expression for
Z(s,0) as follows. Let
J(s) = 2(27)*'T(1 — s) sin(7s/2) (2.3)

(this function is usually written as x(s) in the literature). It is known that

7T8_1/2F(1 S S)F(g) L 9(s)

F-1/2p (2 - 3)r<1 : S) ' 3(s) cot(ms2).

Assume ¢ > 1. Then

and

icot(ms/2) =14+ O(e™™).

Thus we have uniformly
Z(s,0) = 0(—1)7(0)k~*9(s)(1 + O(e™™)), (2.4)

and

Z(5,0)" = 7(0)k9(1 — 5)(1 + O(e™™)), (2.5)
the O(e™™) term being identically zero in case 6(—1) = 1.
Outline of the proof: Initial steps
Our aim is to derive a contradiction from the following

Assumption (A)
L(1,x) < L7222,

The underlying ideas are inspired by the work of Goldfeld [10], Iwaniec and Sarnak
[15] and Conrey, Ghosh and Gonek [4]. The paper [10] exhibits a relationship between the
lower bound for L(1, x) and the order of zeros of the function Lg(s)Lg(s, x) at the central
point, where E is an elliptic curve; the paper [15] exhibits a relationship between the lower
bound for L(1,y) and the non-vanishing of central values of a family of automorphic L-
functions; the paper [4] has definite influence on the idea of reducing the problem to
evaluating certain discrete means that is employed in the present work (the reader is also
referred to [3]).

The initial part of this paper consists in relating the lower bound for L(1, x) to the
distribution of zeros of the function L(s,v)L(s, 1 x), with ¢ belonging to a large set W of
primitive characters, in a domain 2. Thus we introduce

P = exp{L"}. (2.6)



For notational simplicity we write
p~P for P<p<P(l+L%).
Let W be the set of all primitive characters ¢(mod p) with p ~ P, and let
Q={s: [R(s—so)| <1/2, [S(s—s0)|] <Ly+2} (2.7)
where 1
Ly =L 5= 5 +2mito with ¢y = £°%. (2.8)

Throughout, we will assume that p ~ P and v is a primitive characters (modp), i.e.,
1 € U. Note that

P:=> p=(1+0(1)PL (2.9)

p~P
In Section 3 we shall introduce a subset W, of ¥ and prove

Proposition 2.1. Let Uy be the complement of Uy in V. If (A) holds, then

Z 1< PLT™.

Yevs

For ¢y(modp) € ¥, the average gap between consecutive zeros of L(s,¥)L(s,1y) in
Q is

21
~ ———— =1l +0(al)).
log(Dp?t3) ol +0laL))
where
S (2.10)
@ log P’ '

In Section 4 we shall prove
Proposition 2.2. Suppose that v € ¥y. Then the following hold.
(i). All the zeros of L(s,¥)L(s,1x) in Q lie on the critical line.
(ii). All the zeros of L(s,¥)L(s,1x) in Q are simple.
(iii). The gap between any consecutive zeros of L(s,v¥)L(s,vx) in Q is of the form

a+ O0(a*L).

It should be stressed that the set W, is formally defined. In fact, Proposition 2.2
and some other results for ¢y € ¥, are unconditionally derived from the definition of V.



However, one is even unable to determine whether ¥, is empty or not without assuming
(A).

The results of Proposition 2.1 and 2.2 are not surprising and they go back to Heath-
Brown [15]. One may believe that the assertions (i) and (ii) of Proposition 2.2 hold for
all characters ¥ in W. On the other hand, however, in comparison with some conjectures
on the vertical distribution of zeros of the Riemann zeta function (see [2] and [17]), one
may claim that the gap assertion (iii) of Proposition 2.2 fails to hold for most of ¢ in W.
Our proof thus consists in deriving a contradiction from the gap assertion.

Assume 1 € W. Recall that the functional equation for L(s,1)) is given by (2.2) with
0 = 1. On the upper-half plane, since Z(s,1) is analytic and non-vanishing, there is an
analytic function Y'(s, ) such that

Y (s, )2 = Z(s,0)""

Let
M(s,v) =Y (s, ¥)L(s,¥).

Note that M(s,) is defined for ¢ > 0 only, and, for each v, there are two choices of
M (s,%) up to £, but the expressions

M<517 1/1)
M(52,¢)

are independent of these choices. The functional equation (2.2) gives

M(va> = Y(Saw>7lL(1 - 377;)'

Since |Y(1/2 4 it,¢)| = 1, it follows that

M(s1,¢)M(s2,9)  and

[M(1/2+it,9)] = [L(1/2 + it ¥)],

M(1/2 +it, ) € R, (2.11)

and, consequently,
iM'(1/2 +1it,v) € R. (2.12)

The gap assertion (iii) of Proposition 2.2 can be restated as follows. If ¢ € ¥y and
(1/2 4+ iv,1/2 4+ iv") is a pair of consecutive zeros of L(s,¥)L(s,xt) in  with v > ~,
then for some (large) constant ¢’ > 0,

Y — v —al] < da’L.
Write
B =ia(l —5daL), B2 = 2ia(l + daLl), B3 = 3ia(l — daLl). (2.13)
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In what follows we assume i) € ¥;. Let Z(1)) denote the set of zeros of L(s,) in the
region
o —1/2| <1/2, |t —2nty| < L4 (2.14)

(this is slightly smaller than §2). Assume p € Z(¢). Note that

M'(p,1) =Y (p, )L (p,4) # 0.

e M(p + B, )M (p + o, )M (p + B, )
C* _ —1 P 1 P 2 1Y 3 .
(0.) M'(p, )
By (2.11) and (2.12) we have
C*(p, ) € R.

It will be proved that
Lemma 2.3. Suppose ¢ € V1 and p € Z(p). Then

C*(p, ) > 0.

We introduce the smooth weight

VT (s — s0)* . __ 400
w(s) = 3 exp e with Lo = L™, (2.15)

which is positive for 0 = 1/2. Lemma 2.3 implies that
D> Clp)H(p ) Pw(p) > 0. (2.16)
e peZ(y)

for all functions #H(s, 1) defined on Q. Thus, in order to derive a contradiction from (A),
it suffices to find certain functions #(s, ) and show that , under Assumption (A), (2.16)
fails to hold.

A heuristic argument

It is natural to consider the function H(s, ) which is of the form

3 f(logn/log P")pip(n)

n<p’ n
for some P’ < P, where f is a polynomial with f(1) = 0. It should be stressed, on
assuming (A), that if (s, ) is of the above form with P’ slightly smaller than P in the
logarithmic scale, the sum in (2.16) can be evaluated. This is analogous to the results of
Conrey, Iwaniec and Soundararajan [5] and [6]. However, it seems that such a choice of
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H(s, 1) is not good enough for our purpose. On the other hand, the left side of (2.16)
could be “close” to zero for certain non-zero functions #(s,1). For example, one may
consider the choice that H(s, ) is a linear combination of L(s+ 3;, x¢), 1 < j < 3. Thus,
inspired by the approximate formula for L(s, xt), some new forms of H(s,) could be
introduced. However, our goal is not to show that (2.16) fails to hold for certain H(s, )
directly, instead, a variant of the argument will be adopted.

The crucial part of the proof is to construct functions Hi(s, ), Ha(s,v), Ji(s,1) and
Jo(s,1), each of which is of the form

logn/log P n
Zf(g/g)xw)

nS
n<pP’!

with log P’/ log P close to 1/2, and show that the left side of (2.16) is "small” if
7—[(57 ¢) = Hl(sa ¢) + Z(S, X¢)H2(SJ W or H(S7 ¢) = Jl (57 1/}) + Z<57 X¢)J2(87 w>

for 0 = 1/2. On the other hand, the sum

PYeV peZ(v)

is not too small in absoh}te value.
For ¢ € ¥y and p € Z(v), since

Hl(p7¢)Jl(p7¢) + HQ(pa¢)J2(pa¢)
:(Hl(p7 W + Z(pa X¢)H2(P» ¢))Jl(pa ¢) - (Z(p7 X@b)Jl(pad}) - JQ(pa¢))H2(p7 ¢)

and
1 Z(p, x) i (p, ) — Ja(p, ¥)| = |T1(p, ¥) — Z(p, x¥) Ta(p, )],
it follows that
‘Hl(pa w)t]l(p7 ¢) + HQ(PW)&E(PW)‘
S‘Hl(pa )+Z(paxw>H2 p7 HJI Ps )’ + ‘J1<p7 ) (PaX¢)J2 107 “H2 Ps )l

This yields, by Lemma 2.3,

=<5+ E (2.18)
where
H2 - Z Z C* 107 )‘Hl<p> )“‘Z(P?XWHz p7 ||J1 p7 |w( ) (219>
Yev1 peZ(y)

eV peZ(v)



Discrete mean estimates

We introduce some parameters and functions as follows. Let
Pl — PO'5O4, P2 — P0'5T7107 P3 — P0'498,

i 159767
Be = 5 Br = 5

(The definition of 84 and f5 will be given in Section 8.) Write

i loe n Pl Be
(o) = 30 XA Jomny (Y

n<Py
1 P Bz
ats.)= 3520 (1 e (2
n<Ps
1 P Be
Hy(s.0) = 30 X (1 - 1552) (f)
n<P3

(2.21)

(2.22)

(2.23)

(2.24)

(2.25)

(these sums are written as Hi;(s,v) rather than Hi;(s, x)). We also introduce the

numerical constants

1o = 0.94977 — 1.389957, 13 = —1.00635 — 0.227897, 14 = —0.68738 + 1.60688:. (2.26)

We define

Hl(S,w) = Hll(S,w) + L2H12(S,w>, HQ(S,’Lﬂ) = Z3H13(S,w) + Z4H12(8,"¢).

Let f(z) be given by

500(z — 0.5) if 0.5<2z<0.502
f(z) =< 50000504 — z) if 0.502 < z < 0.504
0 otherwise.

We define

3= X (55,

(1 log Dt
Jz(s,lb)zzxﬁin)f( Og”+0.004—&> with &= 82t

log P log P
Let 6
— 2 a0 T
q|D
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(2.28)

(2.29)

(2.30)

(2.31)



It can be shown that the assumption (A) implies

a> 1.

(see Lemma 5.7).

Proposition 2.4. Assume that (A) holds. Then

|=7] > 5aP.

Proposition 2.5. Assume that (A) holds. Then

=5 < 2aP.

Proposition 2.6. Assume that (A) holds. Then

=% = o(aP).

Under Assumption (A), a contradiction is immediately derived from (2.18), Proposi-
tion 2.4, 2.5 and 2.6, This proves Theorem 1.
It should be remarked that Proposition 2.5 follows from the inequalities (on assuming

(A))

Yev peZ(y)
and
Z Z C p7 ’J1 p7 )’2w<p) < 3000&7), (233>
YEVL peZ(YP)

by Cauchy’s inequality (and Lemma 2.3). The proof of (2.32) involves some numerical
calculations.
We conclude this section by proving Lemma 2.3.

Proof of Lemma 2.3. By (2.) we see that M(p +iv,¢) # 0 if |52 < v < [B3]. This
implies, by the mean-value theorem, that

M(p+ Ba, )M (p + B3,9) > 0,

since M (1/2 +it,v) is a real-valued continuous function in ¢. Similarly we have

M(ﬁH‘ﬁl,w)

M (p + iv,1)) 0
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if 0 < v <|p]. Since

iM'(p,p)  wmor M(p+iv,ep)

M(p+ b1, v)
M) =

it follows that

This completes the proof. O
Remark. Tt is implied in the proof of Lemma 2.3 that

L(P‘*‘ﬁlﬂ?)‘ _ _M(p+ B, y)
e rm e e 23
for 1) € Uy and p € Z(v)).
3. The set ¥,
Let v(n) and v(n) be given by
(ps 0 =2 o e = M oy,
respectively. It is easy to see that
[v(n)] < v(n) < 7(n). (3.1)
Lemma 3.1. Assume (A) holds. Then
Z ’/(Z)Q < [0 (3.2)

Di<n< P2

Proof. Let

v(n)®

nS

$(s) = C(s) L5, )

n

which has the Euler product representation

o(s) = [[onls) (0> 1),

For 0 > 0y > 0, by checking the cases y(p) = 1 and x(p) = 0 respectively, it can be
seen that

¢p(s) =14+ 0(p~) if ptD,
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and
Gp(s) = (1 =p)A+0(™™)) if plD,
the implied constant depending on 0. Thus ¢(s) is analytic for ¢ > 1/2 and it satisfies

o(s) < 1 -p (3.3)

p|D

for o > 01 > 1/2, the implied constant depending on ¢;. The left side of (3.2) is
< Z Ln)Q (exp{—n/P?} — exp{—n/D"})
— n
1 2 2( p2s 4s
= d(14+s)C(1 4 s)°L(1 + s, x)° (P — D*)['(s) ds.
271 (1)

Moving the line of integration to the left appropriately and applying standard estimates,
we see that the right side is equal to the residue of the integrand plus an acceptable error
O(D~°). The residue at s = 0 can be written as

[ B0 S SPE( 5 (P — DPIT(s)ds
|s|=a*

with o* = L7202 If |s| = o*, then ¢(1 + s) = O(1) by (3.3),
L(1+s,y) < L2022
by (A) and standard estimates, and
C(1+s) < L2041, (P> — D*)I'(s) < £°.

It follows that the residue at s = 0 is < £72°'1 whence the result follows. O
Lemma 3.2. Assume (A) holds. Then we have

T v(n) 22(%)

DA<n<D8

< 5_2007.

Proof. As the situation is analogous to Lemma 3.1 we give a sketch only. It can be
verified that the function

v(n)?my(n)?

ns

6'(s) = C(s) L5, )Y

n
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is analytic for o > 1/2 and it satisfies

¢ (s) < 11 —p"

p|D

for 0 > 01 > 1/2, the implies constant depending on o;. Also, one can verify that
/ ¢* (14 s)C(1+ 8)8L(1 + s, X)8(D85 — D4S)F(s) ds < [£~2007.
|s|=a*

This completes the proof. O

Lemma 3.3. For any s and any complex numbers c(n) we have

D

Ypew

3 c(n)y(n)

nS

2 2
<Py

n
n<P

n<P

and

3 c(n)y(n)

nS

‘e pry P

20
n< P2 n

2

Ppew

n< P2

Proof. The first assertion follows by the orthogonality relation; the second assertion
follows by the large sieve inequality. O

Let

F(s,1) = Z M) G(s, 1) = Z M

s
n<D4 n<D4

By (3.1) we may write

F(s,)* = ) M’ Gls, ) = 3 va0(n)y (1)

nSDSO n’ TLSDSO n?
with |veon| < 140(n), |veen| < T40(n). Write
vao(n)h(n) v20(n)(n)
XI(I’MZZT’ XQ(xal/)):ZT
n<x n<x

By Cauchy’s inequality and the first assertion of Lemma 3.3 we obtain

D8O 2
> (|X1<D80,w>| X (D® )| + / Xz, 9)l + [ Xa(, ¥)] da:) < LI,
1

i
Yew

Thus we conclude
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Lemma 3.4. The inequality

dx < LM (3.4)

[X1(D¥, )| + | X2(D%, )| + /D (@ o)l + 1 Xale, V)

1 T

holds for all but at most O(PL~™0) characters v in W.

Write
Xs(z, ) = Z vy (n) for x> D*.

Di<n<z

Assume that (A) holds. By Cauchy’s inequality, the second assertion of Lemma 3.2 and
Lemma 3.1,

P2 2
Z (|X3(P2,¢)| +/ de) < P2L1993 o p 1909

e D4 xr

Thus we conclude

Lemma 3.5 Assume that (A) holds. The inequality

P2
X+ [ B g e (3.5)

D4
holds for all but at most O(PL™™%) characters ¢ in V.
Let

n=Ilm
I,m<D*

We have ¢(n) = 0 unless n =1 or D* < n < D?. Write

for x > D*. Tt is direct to verify that
[s(m)] < >~ v(Dlv(m)| < v(n)ma(n).
n=Ilm

Assume that (A) holds. By Cauchy’s inequality, the first assertion of Lemma 3.2 and
Lemma 3.1,

D¥ 2
> (s [ EEl) cppm

YEW D4
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Thus we conclude

Lemma 3.6. Assume that (A) holds. The inequality

D8
| X4(D*, )] +/ M de < L7 (3.6)

D4
holds for all but at most O(PL™™?) characters v in V.

We are now in a position to give the definition of W;: Let W; be the subset of ¥ such
that ¢ € Uy if and only if the inequalities (3.4), (3.5) and (3.6) simultaneously hold.
Proposition 2.1 follows from Lemma 3.4, 3.5 and 3.6 immediately.

4. Zeros of L(s,vy)L(s,x) in €

In this section we prove Proposition 2.2. We henceforth assume that ¢(mod p) € V.
This assumption will not be repeated in the statements of Lemma 4.1-4.8.
We begin by proving some consequences of the inequalities (3.4)-(3.6).

Lemma 4.1. Let
Q1 ={s: 1/2—(100L) "logL <o <1+ (100£) 'log L, |t —2mty| < Ly +5}.

If s € Qy, then
|F(s,0)| + |G(s,v)| < L.

Proof. By the Stieltjes integral we may write
DSO
Pl =1+ [ a7 dXi(w,0)).
1
For s € Q; and 1 < 2z < D¥ we have

d
2% < L, ‘%(:USO_S) < x71LA0s,

Hence, by partial integration,

X

D8O
‘F(S,@D)’m(1+£4O6(|X1(D80,¢)‘+/ de)
1

For G(s,1) an entirely analogous bound is valid. The result now follows by (3.4). O
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Lemma 4.2. Ifs €, then

F(s,0)G(s,0) = 14+ O(L™%7).

Proof. We have

D8

Fla.u)Glav)—1= 3 SR = [ e i o)

4
D4<n<D3 D

Thus, similar to (4.2), by partial integration we obtain

F(s,¢)G(s,0) —1 <K £4OG(|X4(D8,¢)| +/ Xz, 9)] dx),

Di T
the right side being O(L72%") by (3.6). O
Lemma 4.3. Let
Q={s: 12-L'<o<14+L7" |t—2mto|<Li+4}.
If s € Qy, then -
— (8:9) =0(L).
Proof. Assume |w| < (200£) ! log £, so that s + w € Q. By Lemma 4.1 and 4.2,
L7 < |F(s +w,v)| < L.

Thus the logarithm
F(s+w,v)

F(s, )

which vanishes at w = 0, is analytic in w, and it satisfies

[(s,w) :=log

R{l(s,w)} < log L.

Since - 3
F(Sa ,lvb) = %[(87 w)|w:07
the result follows by Lemma 4 of [15, Chapter 2|. O

We proceed to establish an approximate formula for L(s, 1) L(s, x¢). For this purpose
we first introduce a weight g(z) that will find application at various places. Let

x—i xww—l(w)dw c>0
4(z) /(C) (c > 0)

2 w
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with
wi(w) = exp{w?/(4£%)}.

o) = o /@ ( | yw—ldy)m(w) dw.

We may write

Since . 5
2i )., exp{(log y)w + w?/(4L™*)} dw = NG exp{—L*(logy)*},
it follows, by changing the order of integration, that
£15 T 30 ) dy
g(r) = — exp{—L"(logy)“} —.
(@)= 7= [ el £ (0g0)")

This yields. by substituting ¢t = £ logy,

1 LY logx
g(x) = NG /_oo exp{—t*} dt. (4.1)
Thus the function g(z) is increasing and it satisfies 0 < g(z) < 1. Further we have
g(x) =1+ O(exp{—L> log’z}) if 2>1 (4.2)
and
g(r) = O(exp{—L*log’z}) if x<1. (4.3)

Note that x1) is a primitive character (mod Dp). Write

Z(s, ) = Z(s,9)Z (s, xv),

so that 3 B B
L(s,9)L(s, xv) = Z(s,¢)L(1 — s,9)) L(1 — s, x1)). (4.4)
Recall that sg = 1/2 + 2mity. Assume that

IR(s — so)| < 100, IS(s — s0)| < L1+ 3.
By (2.4) with 8 = ¢ and 6 = x1 we have
Z(s,9) = x(=1)7()7(x¥)(Dp*) " 0(s)*(1 + O(e™™)).
This yields, by Stirling’s formula,

|Z(s,0)] = (Dp*5)"*77 (1 + 0(1)) (4.5)
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and

/

Z(5,0) = —2log P+ O(L). (4.6)
Lemma 4.4. Let
={s: 1/2—a<o<l+4a, |t—2rt| <L +3}.
If s € Q3, then

L(s, ) L(s, x0) = F(s,9) + Z(s,¥)F(1 = 5,9) + O(L™'™).

Proof. By the residue theorem,

s tox) =5 [ = [ Jilew ot poom 20

w

By (4.2) and (4.3),

d
L. L(s+w,¢)L(s+w,Xw)P(9/5)wM

21 Sy w
9/5
R M C S R
Di<n<pP?

where
e = exp{—cL'"}.

By (3.5) and partial summation, the second sum on the right side above is

P2 9/5 P2
- / g(P—)xSO_S dX3($,¢) < £1 (|X3(P2,'¢)| ‘l—/ M dl’) < £_180.

D4 Xz D4

On the other hand, by the functional equation, for u = —o — 1/2,

L(s+w,¥)L(s +w, x¥) = (s+w,¢)2%.

n

This sum is split into three sums according to n < D* D* < n < P? and P? < n. The
proof is therefore reduced to showing that

1 ~ wi(w) dw
— 7 —5— pO/syw ZINT)
271 (—o—1/2) (8 T, w) (1 STw w) w (47)

= ~Z(s,9)F(1 = 5,4) + O(P™),
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1 Z(s 4w, 1/1)( Z —V(nw(n))P(g/mw w (w) dw < L7 (4.8)

27 J(—o-172) pramgpr WY w
and _ J
1 _
— Zs+w ) 3 AN pojs @) dw ey g)
270 J o ni-s—w w
(~o-1/2) ey

To prove (4.7) we move the contour of integration to the vertical segments

w =10+ v with |v] < £2,
w=-—0—1/24+iv with |v| > £

and to the two connecting horizontal segments
w=u+iL? with —o—1/2<u<]10.

By a trivial bound for w;(w), (4.5) and the residue theorem we obtain (4.7).
To prove (4.8) we move the contour of integration to the vertical segments

w=—a-+iv with |v] < L2,
w=—-0—1/2+4w  with [v]> L%,

and to the two connecting horizontal segments
w=u+il? with —0o—-1/2<u<—a.

By a trivial bound for w;(w) and (4.5) we see that the left side of (4.8) is

[:20
< Pl2o‘/ V(”)*w(n)
_r20 ns*tw
with s* =1+ a — 5. By partial integration,

3 v(n)p(n) _ /PZ 205 A X (1, 4) < PPL, (|X3(P2,¢)|+/P2 M dx)

—
ns “+v 4 4
D4<n< P2 D D

dv
o+ v

Di<n<p?

for |v] < £*. From this and (3.5) we obtain (4.8).
The estimate (4.9) follows by moving the contour of integration to the vertical segments

w=—0—10+ v with  |v] < £2,
w=—0—1/2+w with |v| > £%]

and to the two connecting horizontal segments

w=u+iL? with —0c—-10<u<—0-1/2
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and applying (4.5) and trivial bounds for w;(w) and the involved sum. O
In order to prove Proposition 2.2, it is appropriate to deal with the function

L(s, ) L(s, x)
F(s, )

By Lemma 4.2, A(s,®) is analytic and it has the same zeros as L(s,1)L(s,¥x) in €.
Further, for s € €y, we have

Als, ¥) =

Fs, )" < L7
by Lemma 4.1 and 4.2. This together with Lemma 4.4 implies that

A(s, ) =1+ B(s,¥) + O(L1), (4.10)

for s € Q3, where

B(s,) = 20s,0)" .

The proof of Proposition 2.2 is reduced to proving three lemmas as follows.

Lemma 4.5. If
1
§+a2<a<1, |t —2mto| < L1 + 2,

then
A(s, ) # 0.

Proof. We discuss in two cases.
Case 1. 1)2+ L' <o < 1.
By Lemma 4.2 and trivial estimation,
F(l - S, 1/;)
—— D"
F(s,v)

Hence, by (4.5),
B(s, 1) < PY?7.

The result now follows by (4.10).
Case 2. 1/2+a* <o <1/2+ L7

Assume 1/2 < ¢’ < ¢. Then both ¢’ +it and 1 — (¢’ + it) lie in Q5. Hence, by Lemma
4.3 and (4.6),

71 / /

(o' + it 1) :ZE(O', +it, ) — %(0' +it, ) — 5(1 — o' —it, )

/
B F
=—2log P+ O(L).

(4.11)
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Since |B(1/2 4+ it,v)| = 1, it follows that

log |B(s, )| = §R{ /1; %(0/4—2'15) da} < (1/2 —0)log P,

Hence, by (4.10),

|A(s,¢)| > 1 — PY*77 £ O(L719) > a. O

Lemma 4.6. Suppose p = 3+ i is a zero of A(s, ) satisfying

1 1
§§5<§+a2, |y — 2mto| < L1 + 2.

Then 8 =1/2, A(p,¢) #0 and A(1/2+ iy +w,¢) # 0 if 0 < |w| < a(l — daLl) where

c is a sufficiently constant.

Proof. Tt suffices to show that the function A(1/2 + iy + w,¥) has exactly one zero
inside the circle |w| = a(1l — daLl), counted with multiplicity. By the Rouché theorem,
this can be reduced to proving that

A(1/2 +iy +w,¥) — (1= P72 < |1 — P™2| for |w|=a(l-caLl),

since the function 1 — P~2% has exactly one zero inside this circle which is at w = 0. In
fact, we can prove that

A1/2 +iy +w, ) — (1 - P?) < al (4.12)
if |w| < 2a, the implied constant being independent of ¢/, and
|1 — P > 6cdaLl (4.13)

if |w| = a(l —dal).
Assume |w| < 2a. By (4.10) we have

A(1)2 + iy +w, ) — (1 — P72) = B(1/2 + iy +w, ¥) + P72 4 O(L™1),

Noting that both s and 1 — s are in {2 if s lies on the segment connecting p and
1/2 + iy + w, by (4.11) we have

B(1/2 + iy + w, 1) :exp{/l/“mw B
P

Blr.0) E(S,l/)) ds} =exp{ —2wlog P+ O(aL)}

=P + O(aL),
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Since B(p,1) = =1+ O(L7'%) by (4.10), the estimate (4.12) follows.
Now assume |w| = a(l — daLl). Write

w=a(l —dal)(cosh + isinb).
Then
[P~ =exp{ —27(1 — daL)cosf}, S{P "} =—|P*|sin{2r(1l — daLl)sinb};
if cosf >cal, then |P?"|<1—6caLl;
if cosf < —cal, then |P™*|>1+6caL;
if |cosf| <daLl, then |I{P?"}|>6caL,

V1—(dal)? <|sinf| <1,

|sin {27(1 — daLl)sin0}| = 2rdal(1 + o(1)).
In either case (4.16) holds. O

Lemma 4.5 and 4.6 together imply the assertions (i) and (ii) of Proposition 2.2. It is
also proved that the gap between any distinct zeros of A(s, ) in Q2 is > a(1 — daL). To
complete the proof of the gap assertion (iii), it now suffices to prove

since

so that

Lemma 4.7. Suppose p = 1/2+1i7 is a zero of A(s, ) satisfying |y — 2nte| < L1+ 2.
Then the function A(p+w, ) has exactly three zeros inside the circle |lw| = a(1+ daLl),
counted with multiplicity.

Proof. In a way similar to the proof of Lemma 4.6, it is direct to verify that
[Alp+w,9) = (1= P72)] < |1 — P

if jw| = a(l + daLl). Hence, the functions A(p + w,?) and 1 — P~** have the same
number of zeros inside this circle, while the later has exactly three zeros inside the same
circle which are at w = 0, w = i and w = —ic. O

We conclude this section by giving a result which is implied in the proof of Proposition
2.2.

Lemma 4.8. Assume that p is a zero of L(s,¥)L(s, xv) in Q. Then we have
Z(p, ) = =Gp,)E(L = p, ) + O(L™1).
Proof. 1t follows from Lemma 4.4 that
F(p,9) + Z(p,0)F(1 = p,g)) < L7,

The result follows by multiplying both sides by Z(p,v) *G(p,%) and applying Lemma
4.1. O
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5. Some analytic lemmas

Lemma 5.1. Suppose p(modp) € ¥, |0 —1/2| < a, |t — 27to] < L1+ 2, u =0 and

lv| < £*°. Then
Z(s +w, ) — Z(s,¥)(pto) ™"

< [l
w
Z(S + w, ¢) - Z(Sv 77ZJ)(f)t0)7w < £—68
w
Z(s+w,x) — Z(s,x)(Dpto) ™" < [l
w

and

Z(s+w,x) — Z(s,x)(DPty)™"

w

< £—68

Proof. We have
Z(s+w, ) vz / /
Z(s, ) ‘exp{/o Z(”w’wdw}'

Assume |w'| < |w|. By (2.6) and the Stirling formula,
/ /19/
Z (s ') = ~logp+ U(s +u') + O(e) = ~ log(pt/27) + O(1 /1),

Hence

Z(s+w, ) = Z(s,9)(pt/2m)~" + O(|w]|/ty).
This yields (5.1) and (5.2) since

pt/2m = pto(1 + O(L™'),  pt/2m = Pto(14+ O(L™®)).

The proofs of (5.3) and (5.4) are similar. O

Lemma 5.2. Let v and s be as in Lemma 5.1. Then

ot Do+ Po W+ 0D _ (0 7(5,)71 1+ O,

Y(s,9)
Proof. The left side is

e I (05

1<5<3
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By (2.6) and the Stirling formula, for |w| < 5a,

Y’ B 17 1 14
s w ) = 5 (s +w, ) = < log(pto) + O(L).
Hence, for 1 < j < 3,
Y(S + ﬁj w) /Bj Y, . _
Ve = - dw ) = (pto)»/*(1 + O(L™%)).
Y5, 0) xp | | Y(8+w,¢) w | = (pto)™*(1+ O( )
The result now follows since
514—522‘1‘53:&. 0

Recall that 9¥(s) and w(s) are given by (2.3) and (2.15) respectively. It is known that
Y(1 —s) =2(2m) °I'(s) cos(ms/2).

For t > 1 we have

I(1—s) =0 (1—s)(1+0(e™)) (5.5)
where
(1 —s) = (2m) °T'(s)e(—s/4).
Let )
A(x) = - o) 0" (1 — s)w(s) ds (5.6)
and
Az) = Ay(z)e(x). (5.7)
Note that

7'('(33’ — to)

ottf2 5 2mi0) = Y s - (FEZY)
Lemma 5.3. Ifx <t then
A(z) = w(1/2 + 2miz) (1 4 O(a)) + O(e); (5.8)
if © > t5%%, then

A(r) < exp{—(10"2Lylog z)*} + exp{—2""/L,}. (5.9)
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Proof. By the Mellin transform (see [1], Lemma 2) we have

Ay(x) = / exp{(so — 1)logy — L2log?y — 2mizy} dy
0
where the logarithm vanishes at y = 1. This yields, by substituting y = e*,

Ax) = /OO exp{sou — Liu* — 2miz(e” — 1)} du. (5.10)

—00

First assume z < t5%2. We may write
exp{sow — Lyw? — 2riz(e” — 1)} = exp{27i(ty — x)w — Low*} f*(z, w)

with
ff(x,w) = exp{(1/2)w — 2miz(e"” — 1 —w)}.

By the relation

/ exp{2mi(ty — x)u — Lou?} du = w(1/2 + 27ix)

o

and Cauchy’s theorem, the proof of (5.8) is reduced to showing that

/ exp{2mi(ty — 2)w — L+ 2°w*}(f*(z,w) — 1) dw < aw(1/2 + 2miz) + ¢ (5.11)

J

for 1 < j <5, where L; denote the segments
Ly = (—o0, —u*], Ly=[-u", —u"+iv"], L3z=[—u"+iv", u" +iv'],
Ly ={u"+iv*, u*], Ls=[u", o)

with
7T(t0 — .Z')

* —1 p5 *

u' =Ly L vt =
2

L3

If we Ly U Ls, then
exp{2mi(to — z)w — Low’}(f*(z,w) — 1) < exp{—L3u*}(1 + e/?).

Thus the left side of (5.11) is trivially O(e) if j = 1,5. By simple estimates,
/ | exp{2mi(to — z)w — L3w*} dw| < w(1/2 + 2miz) + &
L;
if j =2,3,4. Since 3% /L3 < «, we have
fH(r,w) — 1< |Jw|+ 2w < a
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for w € Ly U Ly U Ly. These estimates together imply (5.11).
Now assume z > t5%2. By Cauchy’s theorem, the proof of (5.9) is reduced to showing
that

/ exp{sow — £§w2 —2miz(e’ — 1)} dw < exp{—(10_2£2 log x)Q} + exp{—xo'gg/ﬁg}
Lj

(5.12)
where L;-, 1 <7 <3, denote the segments

L) ={—0c0, =10 ?logz], L,)=[-10"logz, —10"2logz — i/Ls],

Ly =[-10"%logz — i/Ly, 00 —i/Ls).
We have

R{sow — Low* — 2miz(e” — 1)} = 1u — L3(u® —v?) + 27rv<

et sinv

2

v

- to). (5.13)
If w € L}, then the right side of (5.13) is

< —u— (1072Ly log 7)?.

N | —

This yields (5.12) with j = 1. For w € L, U L} we have
zet > 2% > 92ty and — 1/Ly <wv <0,
so that .
an( T gy} > a0
v
If w € L}, then (Lou)? = (1072Ly1log x)?, so the right side of (5.13) is
< —(1072Lylog x)? + O(1).

This yields (5.12) with j =2 . If w € Lj, then v = —1/L,, and the right side of (5.13) is
<1+ %u — (Lyu)* — 2%/ L,.
This yields (5.12) with j =3 . O
As a consequence of Lemma 5.3, the Mellin transform
i(s) := /OO A(x)z* ™ dx (5.14)
0
is analytic for o > 0.
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Lemma 5.4. (i). If1/2 < o <2, then

§(s) < L¢s| 72

(ii). If |s — 1| < 10cv, then

d(s) =1+ O(alogL).

Proof. (i). Using partial integration twice we obtain

1 oo
8(s) = A" (x)z* ds.
(s) s(s+1) /0 (w)z §
By (5.10) we have
A (x) = —4%2/ (e* —1)* exp{sou — B*u* — 2miz(e* — 1)} du.

Thus some upper bounds for A”(z) analogous to Lemma 5.3 can be obtained, and (i)
follows.

(ii). Assume |s — 1| < 10c. By Lemma 5.3, on the right side of (5.14), the integral on
the part |x — to| > £, contributes O(g). For |z — to| < £1 we have

71 =1+ O(alogL).
Since -
/ w(1/2+ 2miz)dx =1+ O(¢),
0
(ii) follows. O

Throughout the rest of this paper we assume that (A) holds. This assumption will not
be repeated in the statements of the lemmas and propositions in the sequel.

The next two lemmas are weaker forms of the Deuring-Heillbronn Phenomenon.

Lemma 5.5. The function L(s,x) has a simple real zero p such that
1—p=0(L7%) (5.15)
and L(s,x) has no other zeros in the region

o>1-2L7" |t| <2D.
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Lemma 5.6. For any primitive character 0(mod r) with r < T and 0 # ¥,

> 0(p)p" T < Pexp{—L"?}

p~P
if |t| < D.

Lemma 5.7. We have

/ b
L'(1,x) > D)’

Proof. The right side of the equality

RS ) C(1+s)L(1+ S,X)m ds = Z $9<D_4)

271 ( ~ n

1s
1 D
> - > —,
nz; n= (D)
since v(n) = 1 if n|D, while the left side is, by moving the line of integration to the left
appropriately and applying (A), equal to L'(1,x) + o(1). O

Lemma 5.8. If
a<|s—1] < 10a,
then
L(s,x) = L'(1,x)(s = 1) + O(az)

where
Qg = ,C_15.

Proof. This follows from the relation
L0 = L) + L1 = D+ [ (s = w)L (w, ) dus
1

(A) and a simple bound for L" (w, x). O

Lemma 5.9. Suppose ¢ € Wy, |0 —1/2| < «a, |t — 2wto] < L1+ 10 and |s — p| > «
for any zero p of L(s,v). Then

L<S + 617 w)
— < log P.
Lisw)
Proof. 1t is known that
L.,
(s, 9) = > ——+01/a) (5.16)
<1 ® TP
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for [R{s'} —1/2| < a and |3{s" — 27to}| < L4 + 10, where p runs through the zeros of
L(s', ).
We can assume L(s + 31,¢) # 0. Suppose o > 1/2. By (5.16),

—%{%(u+it+51,¢)}<0(1/a) for o<u<1/2+a,

so that
‘L<8 + 617 ¢)’

|L(1/2 + o+ it + B1,¢)]
By (9.1) and the condition |s — p| > « for any p,

log <0O(1).

%{%(u+z’t,¢)} =0(1/a) for o<u<1/2+q,

so that ‘

|L(1/2 + a +it, 7))
|L(s, )|

Further, by (5.16) and Proposition 2.2 (iii),

log < O(1).

1 1 log log P
<= > - +0(1/a) < ===+ 0(1/a)

L/
‘f(l/Q + a+it', 1)
k<1/al

for t <t <t+|p1], so that

IL(1/2 4 o+ it + By, 1))
|L(1/2 4+ o+ it, )]

log < loglog P + O(1).

Combining theses estimates we obtain the result. In the case o < 1/2 the proof is
analogous. O

6. Approximate formula for L(s,)

Write
G (y) = {g(y) if y>1/2,

0 otherwise.

Let
Py = PT?ty with T =exp{L"'}.

Lemma 6.1. Suppose yp(mod p) € ¥, |0 — 1/2| < 2« and |t — 27ty| < L1 + 2. Then
L(s,v) = K(s,9) + Z(s, ¥)N(1 = 5,9) + O(Er(s,7)),
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where . Z @ } (%>

-2 (%)

>

n<T3

and where

wi (1v)dv + €.

[:20
El(&d’) = 5_68/
—[20

Proof. By (4.3) we have

Pwi(w) dw
— L A K O(e).
s [ Mo (5.4) +0(e)
The left side above is, by moving the line of integration to u = —1, equal to

1 P w;(w) dw
L(s,¥) + 5 /(_1) L(s +w, ) ————.

It therefore suffices to show that
1 Pw;(w) dw

o L(s+w7¢)T:_Z(S>¢)N(1_8777;)+O(E1(8a¢))

271 (-1)
For u = —1 we have, by the functional equation (2.2) with 6 = 1,
s+ ) = 2w 2 HUE 4 3 )
n<T3 n>T3

We first show that

Pwi (w) dw
(s +w,v) ( ) 1 <L €.
|7 > )l

n>T3

We move the contour of integration in (6.2) to the vertical segments
u=—1, |v]>L?

and
U = _£97 |U| S £20

with the horizontal connecting segments

—LP<u< -1 |v|=L*.
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By a trivial bound for wy (w) and simple estimates, , the integrals on the segments u = —1,
lv] > £2° contribute < €. On the other hand, in the case —£° < u < —1, |v] < L% by
(4.) we have

Z(s 4w, )Pl < (2T*) ™"

and
3ut1/2
Z Tll s—w < T ’

n>T3

whence (6.2) follows. The proof of (6.1) is therefore reduced to showing that
1 —1+4£%0

wy(w) dw
%_ S+ww<znlsw> w

320
1=l n<T3

= — Z(s,)N(1 — 5,0) 4+ O(E1(s,1)).

Note that Pty/P; = T?. The left side of (6.3) is equal to I’ + I” with

I'= Z(s,4) - L./_Hmm ( 3 P(n) )T—wal(w) dw’ (6.4)

(6.3)

271 120 o nl—s—w w
" 1 ) 1wy (w) dw
"= [ (Z(s+w, ) — Z(s,9)(Pto) (Z - w) " . (6.5)
(=1) n<T?2
Replacing the segment u = —1, |v| < £* by u = —1 and using the change of variable

w — —w, we obtain B
I' = ~Z(s,$)N(1 - ,5) + O(c).

On the other hand, moving the segment v = —1, |[v| < L% to u = 0, |[v] < £* and
applying Lemma 5.1, we find the the right side of (6.5) is < Ei(s, ). O

7. Mean-value formula 1

Let N (d) denote the set of positive integers such that h € N(d) if and only if every
prime factor of h divides d (note that 1 € N(d) for every d and N (1) = {1}). Assume
1 < j < 3 in what follows. Write

dh

R(d;m,s) = Z ﬁ(hs ),
heN(d)
(hym)=1
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and

_ g5 bH _ g5 B2 _ o5 B3
)\(m75>:H(1 q )(11_qq_5 )(1 q )

qlm

For notational simplicity we write

I%(d, m, ]_ — 6]) = l%oj(d, m), )\(m, ]_ — 6]) = /\Oj(m).

Let
~ I%Q(dl, d?"k)u(k))k‘l_ﬂ]
§O(na d7 T) = /\0~(n,dr) ?
’ ’ n:zd:k (k)
(k,r)=1
with

Xoj(n, dr) H Aoj (¢

(g, dr) 1

For ¢)(mod p) € ¥ write

C(s. ) = —ifpto) (s, ) O F IO L B N2 B ) -y
L(s, 1)
Let a = {a(n)} denote a sequence of complex numbers satisfying
a(n) <1, a(n)=0 if n>PT 2 (7.2)

Write

=
=

. a(n)y(n)
Aa;1 — =) ———
- ns Y (a’ S’ w) ;
Let J(z) denote the segment [sg + z — Ly, So + z + iL4].
The goal of this section is to prove

Afass,0) = 37 AR)

Proposition 7.1. Assume a; and ay satisfy (7.2). We have

1(ar,aq) : Z e / A(ay; s, ) Aag; 1 — s,9)w(s) ds
i i
1/1 3
:a (531(31, ag) + 252(31, ag> + 553(&1, 32))P

+ O(E(a1, a)) + o(P),

P=>»

p~P

where
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S ZZ |l dr|:0\0j (2; a;iclirgt)) (Z ag(drn)fﬁbj(n; d, T))’

n
and

E(al,ag) :PEZ Z |Sj(a1,a2)|.

1<5<3
In this and the next two sections we assume that 1 < 7 < 3.
Proof of Proposition 7.1: Initial steps

For notational simplicity we write ©; for ©;(a;, az) . Note that for any ¢» € ¥, C(s, 1)
is analytic if o > 1 and |t — 27tg| < £1. We need to show that the sum over ¥; in the
expression for ©1 can be extend to the sum over ¥ with an acceptable error. Namely we
prove

C(s,¥)A(ar; s,v)A(ag; 1 — s,9)w(s) ds = o(P). (7.3)
Ppew, VI

Here Proposition 2.1 is crucial.
Let x(n) be given by

Z k(n)  C(s+ B1)C(s + B2)((s + Bs)

ns ¢(s) ’
and regard a; as an arithmetic function. For ¢ > 1

L(s+ p1,¥)L(s + Po, ) L(s + B3, ) '3 B (k% ay)(m)(m)
L(s, ) Alar;s,¥) = Z s :

Thus, for ¢»(mod p) € ¥ and s € J(1),

n

C(s,@D)A(al;s,z/)) (ptO BgZ IZ /‘i*al (m)

The sum over m is split into two sums according to m < P? and m > P2, To handle the
second one we appeal to the trivial bounds

Z (K * a1)(m)y(m) < P2(1—U)£C’ Aag; 1 — s, 775) < (PT_2)U

s
m> P2 m

for 0 > 3/2, and
Z(s,10) " < (pto)” V2

for 3/2 <o < L7 |t — 2wty < L1. Thus, moving the segment to J(£%) and applying the
simple estimate

/ wis)ds| < 1, |2 < £°, (7.4)
T ()
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we obtain

/J(l) Z(S7¢)1( 3 (k * al)(mW(m))A(ag; 1— s, P)w(s) ds < e.

s
m>P2 m

To handle the sum over m < P? we move the path of integration to 7(0). Hence

‘/ju Alan; 1) Alag; 1 — s, 9)(s, ¥)w(s) ds

S/
J(0)

By (7.4), the proof of (7.3) is reduced to showing that

2

PYeWsa

> (1 * al)yqu)w(m) ‘|A(a2; 1= s,¥)w(s)ds| + Ofe).

m< P2

> L) a1 - s ) = ofP), o =12 (1)

m< P2

Note that (k% a;)(m) = O(15(m)). The left side above is, by Cauchy’s inequality,

(X ) " (; Alasi1 5,9 /(wz 1) "

PeV ' m< P2

() e x ) ()"

m< P2 m< P2 PeWs

3 (5 * a1)(m)y(m)

mS

This yields (7.5) by Proposition 2.1 and (2.9).
By (7.3) we may write

Or=—i> (o)™ Y L(W)+o(P) (7.6)
p~P ¥( mod p)

where

Il(¢> L Z(S7w)—1<z (H*a1)(m)¢(m)>A(a2;l _87,&)(’0(8) ds.

271 J(1) - ms*

Assume ¢ (modp) € V. By (2.4), in the integral I;(¢), the factor Z(s,1)™! can be
replaced by

T()p* (1 - ),
and then, by a trivial bound for 9*(1 — s)w(s) on o = 3/2, the segment J(1) can be
replaced by the line ¢ = 3/2, with negligible errors. Thus, integration term-by—term

gives B _
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This yields

S = S A (T (3 sdumin ) + 00

¥( mod p) ¥( mod p)

Note that (n,p) = 1 if n < PT~2. On substituting d = (m,n), m = dl, n = dk, we find
that the main term on the right side above is

1 1 Kk *ay)(dl)as(dk * - - l

¢ (mod p)

Since 7(1p) = —1, for (kl,p) = 1 we have

- - Ik
> i) =pe( ) + 00)
¥( mod p) b
with kk = 1(mod p). Hence, by Lemma 5.4,

S Z 3 Z (ke x au)( dl (dk) (ZDA <plk>+O(PT . (7.7)

¥ ( mod p) d (l p)=1 )=1

By trivial estimation, this remains valid if the constraint (I, p) = 1 is removed. Further,
by the relation

(mod 1)

we have

Thus the right side of (7.7) is

Z Ly Z (rx )l dl )bidk) (—%)A<}%)+O(PT‘C). (7.8)

I (kD)=

For (I, k) = 1 we have
e _—lﬁ :M L ! (0 5
( k ) o(k) + ¢(k)0(mzwk) (0)0(1)0(—p).

Inserting this into (7.8) we deduce that

S 1) = Ta() + Taalp) + O(PT) (7.9)

¥ (mod p)
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where

B 1 (K * a1)(dl)as(dk)p(k) (T
Ta) =335 e )

and

Mp):%:é; > L) (i p)a( L)

0( mod k)

Note that (pty)”* = —1 + O(ay). By (7.6) and (7.9), the proof of Proposition 7.1 is
reduced to showing that

. 1 3
Zﬂl(p) :g (551(31, ag) + 252(31, 82) + 553(81, ag))

(7.10)
+ O(PﬁQ Z |Sj(a1,a2)]> +o(P)
1<5<3
for p ~ P, and
> 0™ Tis(p) = o(P). (7.11)
p~P
Proof of Proposition 7.1: The error term
In this subsection we prove (7.11).
Changing the order of summation gives
a dk !
ZPﬁSﬂQ Z Z 2( Z Z Kxap)(
p~P ( mod k) l (712>

<20 <plk>

p~P

If k = hr, r > 1 and 0(modk) is induced by a primitive character §*(modr), then
|7(0)| < r'/2. Thus, the inner sum over the non-principal §(mod k) above is

<<Z 12N US(r by 3 9)

>1 0( mod )
where
-0) — B3
S(r, h,d; 0) Z (k*ay)(d Zp O(p (phr>'
(1,h)=1 p~P
Inserting this into (7.12) we obtain
&  h,d; 0 7.13
p~P {d h,r} (mod r)
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/
where Z (dh) denotes a sum over the triples {d, h,r} satisfying dhr < P, and r > 1.

By Lemma 5.3, for dhr < P;, the terms in S(r,h,d;0) with [ > P? make a negligible
error. Also, by the Mellin transform and Lemma 5.4 (i),

Zpﬁae ( ><<£ch7”l 1/ Zp1+lt+,33 ‘ dt (714>

2
oy 1+t

p~P

for [ < P2
Assume 1 < r < D and 6 is a primitive character (modr). By Lemma 5.6, the right
side of (7.14) is
h
< TTPQD ¢

Hence
S(r,h,d;0) < 7'5(d)hrP2D*C.

Thus, on the right side of (7.13), the total contribution from the terms with 1 <r < D is
O(P?D~¢). The proof of (7.11) is therefore reduced to showing that

> Z (r,h, d;0)| < m5(d)hP?D~* (7.15)

R<r<2R 6( mod r)

133/2
for
dh< P, and D<R<(dh)'P

which are henceforth assumed .
Let J(y) denote the interval

[(1/3)Ptoy, 4Ptoy).

By Lemma 5.1, for R < r < 2R, the terms with [ ¢ J(Rh) in S(r, h, d; §) make a negligible
contribution. Thus, it suffices to prove (7.15) with S(r, h, d; #) replaced by

S (Ryr hyd;0) = 3 (kxar)(d)o) > 0(p) ﬁsA(pflLr)

1€3(Rh)
(,h)=1

By the Mellin transform and Lemma 5.4 (i),
S*(R,r, h,d;0) < /lc/ Z (k% ap)(dD)o()1— "

> 1 1e3(Rh)
(I,h)=1

dt
1+¢2

Z é(p)p1+it+63

p~P
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For 0 =1, by the large sieve inequality we have

> X

R<r<2R 6( mod r)

2
< 75(d)*LY(R* + PRhto)(PRhty) ™ < 15(d)*L"

S (kxan)(d)o()
1€3(RR)
(1,h)=1

and

SN < (R*+ P)P®.

R<r<2R 6( mod r)

> o]

p~P

It follows by Cauchy’s inequality that

S ST ISU (R b d:6)] < 5(dRLY(RY2PY? 4+ RTV2P2) < 1y(d)hP?D .

R<r<2R 6( mod r)

R3/2

This yields (7.15).
Proof of Proposition 7.1: The main term

In this subsection we prove (7.10).
Assume p ~ P. We may write

Tilp Z Z &2 Z (ﬁ*al)(dz)a<plk> (7.16)

Since

(k*aq)(dl) = Z k(mq)ay(mo) Z Z k(mq)ai(ms),

mimeo=dl d=di1dys mimo=dl
(m1,d)=d1

it follows, by substituting m; = d;l;, that

(kxa)(d)= > Y w(dily)ai(daly). (7.17)

d=didz I=l1l2
(l1,d2)=1

Hence,

Il
Z (KJ * CL1)< < > Z Z CL1 dglg Z Ii(dlll)A (1—;) .
(1,k)=1 d=dydy (I2,k)= (I1,kd2)=1 p
Inserting this into (7.16) we obtain

a9 dldgk’) (k) lll2
Z¥d1d2z ko(k) Z a1(dal) Z fi(d1l1)A<p—k>. (7.18)

(I2,k)=1 (I1,dok)=1
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The innermost sum is, by the Mellin transform, equal to
1 dql AW
P ( Z /i(—sl)) (p_) d(s)ds (7.19)
211 (3/2) (Ldak)=1 ) l2
(here we have rewritten [ for [;). In view of (7.2), we can assume that
dsls < PT72, didok < PT2.

Every [ with (I,dsk) = 1 can be uniquely written as [ = hr such that h € N(d,),
(h,dsk) = 1)and (r,d;dok) = 1. Hence,

¢(s + B1)¢(s + B2)¢(s + 5)
¢(s) ’

3 R(Cisll) = &(dy; dok, $)N(dydsk, s)
(l,kd2)=1

By the simple bounds

| (dy; dok, 5)| < 75(da) [ |

qld1

14 q%' Am,s)| <]

qlm

14+ =
qO'
for o > 9/10, we can move the contour of integration in (7.19) to the vertical segments

s=1+a+it with |t| > D,
s=1—L""+it  with [t{<D

and to the two connecting horizontal segments
s=o0+iD with 1-L"'<oc<1+a.

This yields, by Lemma 5.2 (i) and standard estimates, that the integral (7.18) is equal
to the sum of the residues of the integrand at s =1 — ;, 1 < j < 3, plus an acceptable
error. Namely we have

1l i AN k
Z H(dﬂ)A(—;) = Z leioj(dl;dgk))\oj(dldgk> (1;—2) + O<pl2€1),

(Lkda)=1 p 1<5<3

where R; is the residue of the function

C(s+ B1)¢(s + B2)C(s + B3)
((s)

o(s)

at s =1 — 3;, and where
£ = eXp{—cﬁl/m}.
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This yields

D ai(daly) Y (dlzl)A@ﬁj)

(I2,k)=1 (I1,kd2)=1

, _ dol
= Z Rj(p/{})l_’gj Z lioj(dl;dgk’))\oj(dldgk) Z al11<52j) +O(Pk?€1)

1<5<3 d=d1dy (Lk)=1

(here we have rewritten [ for l5). Inserting this into (7.18) and rearranging the terms we
obtain

= 3" Rip' S (an,a2) + O(Pey) (7.20)

1<5<3

where

S*(ay, a) = Z Z as(dydk)Roj(dy, dk)Noj(didk) (k) Z ay (dl)
d k

Bj 1-8; °
drdo(k)k )

% . &Q(dldk)l%oj(dl; dk))\oj(dldk)u(k)
S; (a1, as) _zd: Z didp(k)kPi

This yields, by substituting & = rky, [ = rm, n = dik; and changing the order of
summation,

) ay (drm) ~— as(drn) Ao, (drn) Foj (dy, drky ) p(ky )by~
n n=aiki

(k1,m)=1

Since

/\0j<d7“71) = )‘Oj (dr)j\oj (n, dr),
it follows that

Fos(dy. drk) (ke
Aoj(drn) E Fioj (dh, dr 1/1#( DL Aoj(dr)&o;(ns d, ).
ot o(k1)
(kl,’r‘)ZI

Hence
Sj (al, ag) = Sj(al, ag). (721)
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On the other hand, by Lemma 5.2 (ii) and direct calculation we have

, _ 1
iRip™™ = 5=+ 0(L),

2
iRop™” = =+ 0(L),

. _. 3
iRsp ™ = % +O(L).

Combining these with (7.20) and (7.21) we obtain (7.10), and complete the proof of
Proposition 7.1. O

8. Evaluation of =

We first prove a general result as follows.
Lemma 8.1. For any a; and ay satisfying (7.2),

Y ) o) Alar p, ) Alag, 1 — p,P)w(p) = O1 (a1, az) + O1(az,a1) + o(P).

VEVL peZ(y)

Proof. Write

5 M(s 1, V) M(s 2, V)M (s ,
Cls, ) = — M+ B1Y) gw(tﬁw)w (5+ By, )

Assume ¢ € V. By Proposition 2.2, we can choose a rectangle R with vertices at
so+a+ilf

such that LT = £L; + O(a) and such that the set of zeros of L(s, 1)) inside R is exactly
Z(1). Further, without loss of generality, we can assume that |s — p| > «a if s € R and p
is a zero of L(s, ). By Lemma 5.9, the residue theorem and a simple bound for w(s),

3™ € (0, 6) A . ) Al 1 — p. D))
PEZ (1))
1

/mé(S,l/J)A(an s, 1) A(ag, 1 — s,9)w(s) ds (8.1)

= ff(al,ag;zﬁ) — 17 (a1, a;¢) + O(e)

o

where
1

P (ay, a0:0) = —,/J(i )é(s,w)A(al;s,z/J)A(ag,l—5,1/_1)w(5) ds.

271

42



Write s’ =1 — 5. If
s=a+ s+ v e J(a).

then
§'=—a+sg+ive J(—a).

By (2.11) and analytic continuation, for s € J(«) we have

C(s,v) = —C(s',¥)

and

A(al; S, 1#)14(32, I S, 1;)0)(8) = A(52; 5/7 ¢)A(E_11, 1-— 3/7 ?E)W(S’).
These together imply that

—I7 (a1, a0 ¢) = I (A2, a1;9)).

Hence, by (8.6),

> Cp ) Alas; p, ) Alas, 1 = p,d)w(p) = L (a1, a0;¢) + L (82, 815 ¢) + O(e).
PEZ(Y)
Write

I (ay, a;) = L/J( )C(s,lp)A(aI;s,w)A(aQ,l — 5,1)w(s)ds.

271

By Lemma 5.2 and 5.9,

I (ay, a0; ) — I (a1, a; 1)) < 5_114/ L(s+Ba,) L(s+ B3, ) A(ay; 5,10) A(ag, 1—s,1)w(s) ds|.

J(a)

By Cauchy’s inequality, Lemma 6.1, and the second assertion of Lemma 3.3, for s € J(«),

> 1L(s + Ba, ) L(s + B, v) > < P2L*,

e,

37 Ay s,9) Afas, 1 — 5,9)[* < P2L.
Pev

These estimates together with (7.4) and (2.9) imply

Z (ff(al,ag;w) — [f_(aba%w)) =o(P).

pev;

On the other hand, moving the segment J(«) to J(1) gives

Z ]f(al,agﬂ/}) = @1(&1,32) + 0(8)

PeW,
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Hence ~
Z I (a1, a2;¢) = ©1(a1, a2) + o(P).

Pev,

For the sum of I; (ay,a;;1) a similar result holds. This completes the proof. O

Recall that Hi(s, ) and Ha(s,v) are given by (2.27). Write

=) Z C*(p. )| Hi(p, ) + Z(p, xt) Ha(s, )| "w(p)

Yev1 peZ(Y
Since |Z(s, x¥)| = 1 if 0 = 1/2, it follows that

E1=Z1 4+ 2+ 2R{=13}

1 = Z Z C*(p,¢)|H1(p,¢)|2w(p),
)

PeVy peZ(Yp

Ee= ), Y C(p)lHalp,v)[Pw(p),

YeW1 peZ ()

where

[1]

YeW1 peZ (1)

We may write

(s, ) = 3 A0

where

otherwise,

{(1—logn/logP1)(P1/n)ﬁ6 if n<P,
w1 (n) = 0

(n) (1 —logn/log P)(Py/n)"" if n< P,
2 =
? 0 otherwise,

(n) (1 —logn/log Ps)(Ps/n)% if n< P,
»3(n) =
’ 0 otherwise.

In this section we evaluate Z;;. By Lemma 8.1,
Z11 = 2R{O1(ai1,a2)} + o(P)

with

a11(n) = x(n) (5e1(n) + t2302(n)),  as1(n) = aii(n).
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By Proposition 7.1, our goal is reduced to evaluating the sum

Aoj (dr m) (s (drm) + 1o (drm
5, (aus, 001} = Zzbc () ()(Zx( ) (a(drm) + s >>>

dro(r) — mt=5
x(n) (%1((17“71) + Zz%z(drn))&)j (n;d,r)
Write
ﬁ4 = 617 65 = 527
so that

{5]7 Bj-f—la Bj—l—?} - {/817 627 63}
Lemma 8.2. Suppose T'< x < P. Then for u=6,7,

Bu X
y~ xlm) (—) log = = /(1) Fule) + O(£)

mi=Pi \m

m<zx

where
Fiu(z) = (1 + (B, — Bj) log I)lﬁ“
Proof. The sum is equal to
1 x®ds
S L A B,
2mi J J (s — B.)?

We move the contour of integration to the vertical segments
s=a+it with |t| > D,
s=—-L"'+it  with [f|{<D

and to the two connecting horizontal segments

s=oc+4iD, with —L1'<o<a.
It follows by Lemma 5.6 that
Bu s
m) [ x x 1 x°ds
S AE(E) ot = [ g s 0 E T O

m<z mi=h m 2w |s|=5a (S - Bu)

—I/(1,) - 21 /| N (88(_ 5:3]) ds +0(L).

The result now follows by direct calculation. O
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The sum involving &y;(n;d,r) is more involved. We need the following lemma that
will be proved in Appendix A.

Lemma 8.3. Suppose dr < PT~2. The function

, Lo L(s, x) x(n)&o;(n;d,r)
Ul rs) = L LT B o

1s analytic and it satisfies

U;(d,;s)] < CH (1 + cq_")

q|dr

for o > 9/10. Further, if |s — 1| < ba, then
Ui(d,r;s) =TI(d,r) + O(L™®)

where

1 1—q¢'—x(q)q
. =11 1-x(g)q! 11 1 -

qldr (g,m)=1
qld

Lemma 8.4. Suppose dr < PT~2 and T < x < P. Then for i = 6,7,

noi(nid,r) [\ P =
3 X (5) log = = L' (1, \)I1(d, )Gy, (2) + O(L ™)

n<x
where
Gute)= Bt (1 B _ (o = a =) ),
Proof. The sum is equal to

x(n)éoj(n;d,r) x®ds
27TZ (Z :Ll—f—s > (S _|_ 6}1)2‘ (89)

The contour of integration is moved in the same way as in the proof of Lemma 8.2. Recall
that

ZX 503 n; d T) - L<]-+8+/6]+17X)L(1+8+ﬁ]+27x>u(d r 1+S)
VAR :

nlts - L(1+s,x)

By Lemma 5.5 and 5.6, for |s| = ba we have

L1+ s+ Bj+1, X)L(1 4+ s+ Bjt2, X) _ (1) (s + Bijt1)(s + Bj+2)

—15
L(1+s,x) s +OL).
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Combining these results with Lemma 8.3, we find that the integral (8.9) is equal to

L'(1,)I(d, 7) - 271m /|S| ) (s + ﬁm)s(s + Bjv2) (s;i Céi)Q +O(L").

The result now follows by direct calculation. O
By Lemma 8.2 with z = Py /dr and x = P, /dr respectively we have

x(m) s (drm) L/(LX) —15
Z g = Tog P, Fio(Pr/dr) +O(L™7)

if dr < P;/T, and

x(m)saldrm) (1)
Xm: mi-5; ~ Tog Iy Fin(Py/dr) +O(L™)

if dr < P,/T. On the other hand, by Lemma 8.3 with x = P,/dr and = = P/dr
respectively we have

X(”)’_ﬁ(drn)fw(n;da r) N L'(1, )l(d,r) —15
> p = T p Gl B/ +O(L7)

if dr < P,/T, and

X(n)f{?(drn)é()j(n; d, T) . L/<1a X)H(d7 T) -15
T . — S G Pafar) + O(L ™)

if dr < P,/T. Gathering these results together we conclude, by simple approximation,
that

Si(a, az) Z |,u )‘Oj(dr)n(dv r)
dr<P>
Fie(r/ d?“) j7(P2/ dr)\ (Gie(Pr/dr) | Gia(Po/dr)
X + L2 + L2
log P, log P, log P, log P,

+ L'(1, x)? ) ; ) %Agj(dﬂﬂ(d, 7«)56(]3 1{&223? /dr) o(a).

It can be shown, by verifying the case n = ¢*, that

) M II 0" —x@e™) =[O0 - x@a ™),

n=dr (gr)=1 qln
qld
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so that

Z |” - (8.10)

= p(n)
It follows, by substituting n = dr, that
A
S; (3117321 Z x(n ’ Oj
n<Ps

" ( je‘(Pl/”) Fir(Pa/n) )(gjﬁ Pi/n) e gj7(P2/”))
log P, 2 log P, log P, 2 log P,
RV X (g2|()\(3j< JG(PEI/OT;)%;(PM”) + o(a).

Since for n < P,

oj(n) = H(l — ¢ 21+ 0(alogq/q)) = Ld ?2 + O(ay)

qln

and, for x < P,

n)le(n D L 6
Z [X( 7)7/’2<P( ) _ SO(D ) ( H (1—¢ )) log 2+0(log £) = = (g quLl) log z+0(log L),

n<x (¢,D)=1

(see [T, 1.2.12]), it follows by partial integration that

P
. _ [ (FeP)x)  Fa(Byfx)\ (Gie(Pi/x) | Gi(Pa/x) do
Si(au, az) _a/1 ( log P, ti2 log P, log P, tie log P, x

L B Fio(Pi/2)Gje(Pr /)
(log P1)? Jp, r

(8.11)

dx + o(«).

This yields, by the change of variable x — P /z or x — Py/z,

a " Fio(2)Gje(w) 4 aleo]? [ Fir(x)Gr(x)
(log P1)? J; T (log 7»)* J; T
P 0.0047710
Lo 2 Fir(x)Gje (PP T )
T log P)(0s B) /. .
N aZQ P> .F.jﬁ(PO’O(MTlOLU)gj?(I)
(log Py)(log ) J, T

dx

Sj(31173—21) =

dx (8.12)

dz + o(a),

since Py /P, = P71 By direct calculation, for 0 < z < 1 we have
Fie(P?) = fi6(2) + O(L™®),  Gjs(P?) = gj6(2) + O(L™),
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Fir(P?) = fj2(2) + O(L®), Gi7(P?) = gjz(2) + O(L™?)

where

fi6(2) = (1 + %z) BTz g 16(2) = 2 + ( - g - ﬂz) e(=3mi/2z (8.13)
f ( _ 1 o ﬂ (37Ti/2)z il o 1 ﬂ (737Ti/2)z 8 14
26(2) = 57 )¢ ; 926(2)—3+ 3+226 ; (8.14)

3mi , 8 1 m ,
f36(2) = (1 — 72’) eBT/Dz - gas(2) = g™ (5 + Ez) e(=3mi/D)z, (8.15)
) 24 1 ) .
fl? (1 4+ 22 ) 5#1/2)2’ 917(2) = % + (% + 1—02:) 6(—57rz/2)z’ (816)
12 13 3m _5mi/2)z
for(z) = (1+ ) GTi/DZ - gyr(2) = 25 + (% + 1_02> e\, (8.17)
8 17 3m )
f37 <1 ) (57TZ/2) , 937( ) 25 + (% — EZ) 6(_57'(‘2/2)2‘ (818)
Substituting x = P* we obtain
g 6 ) 1 0.504
1og Pl / J dx = (()504)—210gp/0 ij(Z)gjﬁ(Z) dz + O(Oé),
% Fyr(2)Gja (@ 1 05
(log PZ) J ( L J ( ) dr = (()5)2 IOgP ; fﬂ(z)gﬂ(z) dz + O(Of),
1 Py ]-"ﬂ(:c)ng(PO-OO“Tl%) "
(log Py )(log ) J, T
1 0.5
= (05)(0504) log P . fj?(z)gjﬁ(z + 0004) dz + O(Oé),
1 Py ]?6(P0'004T10x)gj7(x)) "
(log Py)(log P) J, x
1 0.5

= 050500 log P, 1oz T0004)gsr(2) dz +ofa).

Inserting these into (8.13) we obtain

1 2 3 _
%51(311, ag) + 552(311, ag1) + %53(3117 ag) = a(bn + t2ba1 + 212 + 102‘2522) +0o(1)

where

1 0504 /1 3
b1 = m/ﬂ (§f16(2>916(2> + 2fa6(2) g26(2) + §f36(z)936(2)) dz, (8.19)
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1

T 0.5

_— 1
1 7(0.504) (0.5)

622

/0 | (%fl?(z)gﬂ(z) + 2f27(2)g27(2) + gf37(2>937<z)) dz, (8.20)

0.5
X / (%fn(z)gw(z +0.004) + 2f27(2)ga6(z + 0.004) + gf37(2)936(3 + 0004)) dz.
0

(8.21)
1

(0.504)(0.5)7

0.5
X / (%flﬁ(z + 0004)917(2’) + 2?26(2 + 0004)927(2) + ;f36(2 + 0004)937(2>> dz.
0

612 =

(8.22)
It follows by Proposition 7.1 that
O1(ai1, az) = (bn + taba1 + 12b12 + |L2|2b22)aP + o(P).

This yields, by (8.7),

Ell = claP + O(P) (823)
where

€1 = c11 + Lacar + TCi2 + |22

with

11 = biy + b,

Coa = bao + @;

c1a = b + bay,
Co1 = C12.

Let € be a complex number satisfying |e| < 107, not necessarily the same in each occur-
rence. Numerical calculation shows that

C11 — 3.61226 + 6/2,

Coy = 1.32215 + €¢/2,
1y = —0.45757 — 0.18179i + ¢/V/2.

It follows that
¢ < 6.9955. (8.24)
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9. Evaluation of =

In this section we evaluate Z15. By Lemma 8.1,

512 = 2%{@1 (8.12, 322)} -+ O(P) (91)
with with

a12(n) = x(n) (t333(n) + taser(n)),  axn(n) = axn(n). (9.2)

Hence

Aoj(dr (m) (z32¢3(drm) + t43e5(drm)
(a2, 220) Z X ()] () [ Aoy ( )(ZX ( ))

dro(r) — mi=5
y <Z x(n) (t3323(drn) + tasz(drn))&o;(n; d, r)) ‘

n

By Lemma 8.2 and 8.4, for dr < P3/T,

x(m) s drm) L’(l,X) B
R L

and

x(n)zs(drn)éo;(n;d,r)  L'(1,x)(d,r) 6
> . = s B, Gis(Ps/dr) +O(L™5).

Thus, in a way similar to the proof of (8.12), we deduce that

(212, agy) _aZ/ <_3 so(Ps/7) 54]'_3‘7(P2/a:)) <L3gj6(P3/l') . L4gj7(p2/x)> da

r<D 1Og P3 log PZ 10g P3 ]Qg P2 T
|taf*a 2 dx
(log P2)? Jp, Fir(P2/x)Gj7(P2/x) - +o(a)

It follows, by the change of variables x — Py/x or © — Pj3/x, that

ales] [ Fis(@)Gje(x) a7 Fir(2)Gir(x)

Si(aig, a) :(log P2/, x do + (log )2 J, xr o
+ a3ty B Fio ()G (PO T0g) dx
(log P,)(log Ps) J, z
alyl3 PS E7(P0'002T710x)gj6(x) dr + o)
(log P)(log Ps) J; z |

since Pp/P3 = P%%2T10  This yields, by substituting z = P?,

1 2 3 _ _
%51 (ai2, 322)4—552(312, a22)+£53(a127 ag) = Cl(|b3 ’2533+L3b4b34+b4bab43+|L4|2b44) +o(1)

o1



where

1 0.498 1 3
baz = m/{) (§f16(2)916(2) + 2f26(2) 926 (2) + §f36(2)936(2')) dz, (9.3)
baa = boa, (9.4)
1 0.498 3
bay = - 0.002 2 0.002 - 0.002 d
34 (0.500)(0.498) 7 /O (2f17(2+ )916(2)+2f27 (24 )926(Z)+2f37(2+ )gs36(2) | dz,
(9.5)
1 0.498 3
(9.6)
It follows by Proposition 7.1 that
@1<812, a22) = (‘L3‘2533 + 1304b3g + tal3byz + ‘L4’2b44) aP + O(P)
This yields
=10 = CQQP + O(P) (97)
where
€ = |L3|2033 + 1304C34 + Lal3C43 + |L4|2C44
with o
c33 = b3z + baa,
Cq4 = Ca2,
c34 = b3 + @7
C43 = C34.
Numerical calculation shows that
C33 — 3.69507 + 6/27
C3q = —0.4526 + 0.194747 + €/V/2.
It follows that
¢y < 6.9955. (9.8)
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10. Proof of Proposition 2.4

The goal of this section is to prove Proposition 2.4. We continue to assume 1 < 7 < 3.
Note that f(z) € R. If 0 = 1/2, then

logn .
Z n1 s (logP) = Al =s9),

1 _
Z nl S (IOEZ +0.004—d) = Jo(1 — s,0).

By Lemma 8.1 we have

Z Z C*(p, ) Hi(p,¥) 1 (p, ¥)w(p) = O1(air, ar3) + O1(az, az) + o(P)

eV peZ(p)

with aj1(n) and a9 (n) given by (8.8), and with

ar3(n) = x<n>f(f§§;)’

and

D D Cp ) Halp, ) Ja(p, ¥)w(p) = O1(ais, an) + O (a1, ais) + o(P)

eV peZ(v)
with aj2(n) and ag(n) given by (9.2), and with

logn

ais(n) = x(n)f (logP +0.004 — d),

Hence

=1 = O1(ai, a13) + O1(ais, az1) + O1(ays, az) + O1(aie, a4) + o(P). (10.1)

Lemma 10.1. Write

Z x(m log m)/ log P)

Vis(y -
If1 <y < PY/T, then
Vlj(y) <K Tﬁc; (102)
if PY5 <y < PY592/T then
500L/(1, )
Vis() = LN (1 g tog(y/PO) + O(c); (103)

log P
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if PO502 <y < POSO4IT yhen

500L(1, x) . _
Vij(y) = W(l — Bjlog(P*™ /y)) + O(L™");
if
y c (PO'5/T, P0'5] U (P0.502/T7 P0'502] U <P0'504/T, P0'504),
then

Vi(y) < L7

(10.4)

(10.5)

Proof. The inequalities (10.2) follow by the Polya-Vinogradov inequality and partial

summation. Write

Pll — PO.504 P2/ — PO.502 P?: — PO'5.

? ?

Then
500 1 (P))® —2(Py)° + (P5)° ds

IOgP ' % (1) ys ?
In the case P%5 <y < P%502/T

f(logy/logP) =

500 1 P —2(Py)* ds
L(l—ﬁj‘i‘S,X)( 1) ( 2)

Vii(y) = L as.
1Y) log P 2mi J s 52

(10.6)

(10.7)

by (10.6). The contour of integration is moved in the same way as in the proof of lemma

8.1. Hence, by Lemma 5.8, the right side above is equal to

WL L[ BN A g
|s|=b5c

log P o ys 52

The yields (11.3) since the residue of the function
(P1)° = 2(R)° s = 5

ys 82

at s = 0 is equal to —1 — 3, log(y/P°?).
Similarly, in the case P%%% < y < P%% /T we have

500 1 P[\° ds
Vi) = 22 . L[ pa—g s 2) %
1](y) IOgP 27 1) ( 6] +s X)( y ) 52

This yields (10.4) in a way similar to the proof of (10.3).
In the case y € (P%?/T, P%5| U (P%3% /T, P01y and m < T, we have

f(log(ym)/log P) < au,

o4



so (10.5) follows by the Polya-Vinogradov inequality and partial summation; in the case
y € (P%592/)T P%5%] we use (10.7) and a simple estimate for the integral on the new
segments to obtain (10.5). O

Lemma 10.2. Write

Z X(n)f( log(drn)/ log P)foj(n; d,r) ‘

Vi (d,7) = :
If dr < P%5/T, then
ng(d, 7“) = Ll(l, %%EI(CZ’ r>ﬁj+1ﬁj+2 log P + 0(5_15); (10-8)
if PO < dr < PYS2)T then
Vyy(d,r) = SOEL M) )y, ) 4 0(2) (10.9)

log P

with

Bi11Bira po.504 0.502
Vij(y) = (Bjs1 + Bjs2) log(y/P*?) + %(IOgQ S 2log” ; );

if PY502 < dr < POSYT then

500L (1, x)II(d, r)

Voj(d,r) = og P (14 Do;(dr)) + O(L7"?) (10.10)
with
Vaslt) = (s + By20) log(PO fy) + P22 12 (po01 1)
if
dr c (P0.5/T7 P0'5] U (PO'SOQ/T, P0'502] U (P0'504/T, P0'504),
then

Voj(d,r) < L77. (10.11)

Proof. First assume dr < P%®/T. In view of (8.9) and (10.6), we have

V. (d ’I“) — 500 . / L(l + ﬁj+1 + S?X)L(l + ﬁj-i—? + S?X)“Oj(s;da T)
A log P J L(1+s,x)
(P —273) + (P ds
(dr)s s2°
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The contour of integration is moved in the same way as the proof of Lemma 8.1. Thus,
by Lemma 5.8 and 8.2,

S500L(1, )Ii(d, r) (Bjr + 8)(Bjra +5) (P1)° = 2(B)° + (P)° ds -
(dor) = ’ ) j j 2 3) as 15y
Vaj(d, ) log P /| o . () - +O(L™Y)
This yields (10.8) since the function
(P1)° = 2(F)° + (B3)°
52
is analytic and equal to (log P/500)? at s = 0.
Similarly, in the case P%°/T < dr < P%592 we have
500L/ (1, )I1(d, ) ~ 1 / (Binr +8) Bz + ) (P1)° — 2(P3)° ds 15
(d. 1) = I — +0(L);
V2]( ,7") lOgP 271 |s|=10a S (dT)s 52 * ( )’

in the case PY%%? < dr < P%°%/T we have

500L' (1, )II(d,r) 1 (Bjs1+8)(Bjsa+5) (P ds _
Vaj(d:r) = log P 2_m/|5| 10a : s : dr) $* +O(£7).

These yield (10.9) and (10.10). The proof of (10.11) is similar to that of (10.5) in the case
y € (P32, pos02) O

By direct calculation, for 0 < z < 1 we have
Bilog P = mij(z — 0.5) + O(L™®), Bjlog P*?"* = 7ij(0.504 — z) + O(L™®),
Vi;(P?) = 91;(2) + O(L7®),  Vo;(P?) = 095(2) + O(L™),

where

p11(2) = 5mi(z — 0.5) — 377 ((0.504 — 2)* — 2(0.502 — 2)?),
P21(2) = 57i(0.504 — 2) — 37%(0.504 — 2)?,

D12(2) = 4mi(z — 0.5) — 37; ((0.504 — z)* — 2(0.502 — z)?),

2

D22(2) = 4mi(0.504 — z) — 3%(0.504 — )2
D13(2) = 3m(z 0.5) — 7%((0.504 — 2)* — 2(0.502 — 2)?),
Do3(2) = 3mi(0.504 — z) — 77 ((0.504 — 2)*.
Remark. Similar to (10.6),

F(logy/log P +0.004 — &) = 20 1 / (Dto )s(P{)S—Q(Pz’) (P})* ds
1)

log P "o 0004 Y $2
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Thus, with simple modification, Lemma 10.1 and 10.2 apply to the sums
Z X(m)f( log(ym)/log P + 0.004 — &)

mi—Fi

m

and

Z X(n)f( log(drn)/log P + 0.004 — &)&;(n; d, ) |

n
n

FEvaluation of ©1(ayy, a;3).
We have

Aoj (dr (m) (se1(drm) + 193e5(drm)
S (. ang) ZZ|X )X (r) s )(ZX ( ))

dro(r) mi=bi

y (Z X(n)f(log(drn)/ log P)ﬁoj(n; d, 7“)) .

n

m

n

The right side is split into three sums according to
dr < PO'S, P0,5 S dr < PO'SOQ, PO.502 S dr < P0'504.

By Lemma 10.2 and the results in Section 8, the sum over dr < P°® is equal to

L'(1,x)° X(n)[Xoj(n) ( Fye(PO%/n) — Fyr(P0/n)
o0 b ; o(n) ( 0504 27 05 )+0(0‘>

:a5j+15j+2 /P' <]:j@(PO‘5O4/$) Ty ~7:j7(P0'5/x)> dz
1

500 0.504 2705 - tol)

xr
a5j+15j+2 log P /0.5 fi6(0.004 + z) fir(2)
_ d .

500 ; 0504 "2 @+ ola)

0.5
Similarly, the sum over P%5 < dr < P%592 ig equal to

500L/(1, x)? n)|Xoi(n
( ;C) Z X (1) | Ao ( )]_—j6
0.504log” P, A= . ¢(n)

500a 0-502
= 5 6(0.504 — -1 A d .
0.504 log P /0.5 Fol 2) (= 14 915(2)) dz + o(e);

the sum over P%%0% < dr < P%5% is equal to

0.504log2PP0‘502<Zn;P0‘504 o(n) Fio(PO%/n) (1 + Va;(n)) + ofc)

500a 0.504
~0.50410g P /O _ T0(0.504 = ) (L4 95(2)) dz + o).

(P2 /) (= 1+ Y15(n)) + o(a)
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Noting that
Bj+1Bj421log P = —(11 = 65 + j°)ma + o(a)
and gathering the above results together we conclude

1
aSj(aH, 3_13) = dgja -+ 0(1)

11—6j+5)m [/ 1 L
! = ) /0 g7 6(0004 4 2) + o=fj2(2) ) da
500

0.002
0.5047 /0 (Fj6(2) — §6(0.002 + 2)) dz

500 0-502 0.504
* 0 504n (/05 hol0- 008 = 2 () =+ /0‘502 £6(0.504 — 2)10;(2) dz>_

Hence, by Proposition 7.1,

1 3
@1(&11, 313) = (§d31 + 2d32 + §d33> aP + O(P) (1012)

FEvaluation of ©1(a;3,as).

We have
Ao (dr (m)f log(drm)/log P
Sj(aiz, ag) ZZ’X H/;iip oy )(ZX ( ?il—ﬁj ° ))
n) (2 (drn) + ta2(drn)) o (n; d, v
><(Zx()(( )+ lden(eidr))

n

The right side is split into three sums in the same way as in the last subsection. By
Lemma 10.1 and the results in Section 8, the sum over dr < P%® is o(«); the sum over
P < dr < P%5%? is equal to

500[/(1, X)2 |X(n)|)\oj(n) 05 0.504
0.504log? P Z W( —1— B;log(y/P*°))G;e(P*°% Jdr) + o(c)

PO.5 <y PO.502

500a 0.502
= 0.5041og P / (=1 —mij(z —0.5))g;6(0.504 — z) dz + o(a);
’ 0.5

the sum over P%?%? < dr < P95 j5 equal to

500L/(1, x)* Ix(n)|Aoj(n) 0.504 0.504
0.504 log? P > W(l—ﬁﬂog<P /n))Gso(P** /) + o(a)

P0.502 <y « PO.504

500a 0-504
- 1 — mij(0.504 — (0504 — 2)d
0.504 log P /0.502 (1= mij 2)) sl 2) dz+ ol)
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Gathering these results together we conclude

1
ESj(alg, 321) = d4ja + O(].)

with
500 0.002
U =5 501 /0 (9j6(2) — 956(0.002 + 2)) d=
50045 0002
T [ (@e00024 20002 - 2) + gy2)2) d
. 0

Hence, by Proposition 7.1,

1 3
@1(&13, 321) = (5(141 + 2d42 + §d43> CLP + O(P) (1013)

FEvaluation of ©1(ay4, ass).

We have

dro(r ml=Pi

S;(ays, ag) Z Z X (d)]|pex (r ’)\og(dr) (Z x(m) f (log(drm)/log P + 0.004 — d))

m

x(n )(Lg%g(d?"n) + L45r2(drn))§0j (n;d,r)
" (Z )

n
n

The right side is split into three sums according to
dr < P0496  p0496 ~ g p0498  p0498 ~ g - p0.5

By a result similar to Lemma 10.1 and the results in Section 8, the sum over dr < P49
is o(a); the sum over P49 < dr < P%49 i equal to

500L/(1, x)? > (mosln) g g (proassy)

10g2 P P0-496 <y P0.498 QO(TL)
Z!
(G (P )+ GG (P ) + o)

500 0.498
= bg;/ (—1—mij(z — 0.496))
0.496

L3
X (0498%6(0 498 — z) + 059]7(05 )) dz + o(«);
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the sum over P%4% < dr < P%5 is equal to

500L'(1,X)* t4. 3 PRos) (1 06 (PO5 1)) G12(PY /) + ofa)

10g2 P 0. P0-498 <y PO.5 @(n)

1000¢4a /0-5 g
= 1 —mi5(0.5 — 2))g;7(0.5 — 2) dz + o(«).
og P 0498( ( ))gj7( ) ()
Gathering the above results together we conclude

1
aSj(al4, 822) = (dg] + d5j)a + O(l)

Wlth 0.002
50005 [
I
- () d
5 = T 0.4987 / 8jo(2) d2,

1000e, (%
ds; = - 1 /0 (gj7(2) — 9;7(0.002 + 2)) d=

50041 0.002
_ ot / (0.002 — 2)gj6(2) dz
0

0.498
0.002
—1000@'&4/ ((0.002 — 2)g;7(0.002 + z) + 2zg;7(2)) d=.
0

Hence, by Proposition 7.1,

1 ! ! 3 U
@1(&14, 3.22) = (i(dm + d51> + 2<d52 + d52) + §<d53 + d53)> aP + 0(7)) (1014)

Evaluation of ©1(ajs, aly).

We have
Aoj(dr (m) (z35e3(drm) + t42e2(drm)
S, (a2, an) szx H/;i((p [ Ao ( )(ZX ( — ))
y <Z X(n)f(log(drn)/ log Pn—l— 0.004 — &)&o;(n; d, r)> |

The right side is split into three sums in the same way as in the last subsection. By a

result similar to Lemma 10.2 and the results in Section 8, the sum over dr < P%4% is

equal to
L'(1,x)? [x(1)|Xoj(n) ((BFjs(P**/n)  0Fiz(P*/n)
“s00 PP <;4% o(n) 0498 05 o)
BB [T (Fe(PYS)x)  0F (P /a)\ da
aiae i + o)
500 J, 0.498 0.5 x
a6j+1ﬂj+2 10g P /0'496 Z3fj6(0‘002 + Z) Z4fj7(0.004 + Z)
500 ; 0498 0.5 2+ ola);
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the sum over P%4% < dr < P%4% j5 equal to

500L/ (1, x)?
log® P

Z X ()| Xoj(n) (T3 Fj6(P°4% /n) .\ 14 F 7 (PO5 /)
p0-496 <y PO.498 Sp(n) 0.498 0.5

X ( -1+ y1j(P0'004n)) + o(«)

500a (%% (Ts§i6(2) | 1af;7(0.002 + z)
- —1 (0.502 — .
log P /o ( 0.498 0.5 ) (= 1+91;(0.502 = 2)) dz + o();

the sum over P%49 < dr < P is equal to

10006, L/ (1, x)?
log? P

n/\ojn
3 (1) [ o5 (1)

p0,498§n<p0,5 QO(TL)

Fyz(PY2 /) (1+ Yoy (P***'n)) + o(a)

1000i4a 0.002
= 10g]i / fir(2) (1 +12;(0.504 — z)) dz + o(a).
0

Gathering the above results together we conclude

1 /
aSj(alg, 314) = (de + dﬁj)u + 0(1)

with 0.002
50005 [
=~ g /0 fio(2) dz. (10.15)
g (11 — 65 + )7 /0-496 13f;6(0.002 + 2) N 14§;7(0.004 + 2) "
07 500 0 0.498 0.5

. 1000z

/O () — §7(0.002 + 2)) dz

500 %% (Tafie(2)  Taf7(0.002 + 2)
— (0.502 — 2)d
T /0 (0.498 * 0.5 )"“( 2) dz
1000z,
_l_

0.002

/ fi7(2)92;(0.504 — z) dz.
T 0
Hence, by Proposition 7.1,

1 ! ! 3 !
@1(812, 314) = (§(d61 + dﬁl) + 2(d62 -+ dGQ) + §d63 + deg)) ClP + 0(73) (1016)

It follows from (10.1) and (10.12)-(10.16) that

El =@ +9)aP +o(P) (10.17)

where

= (4 )+ 2(dy + ) + 5 (s + ),

N —

61



1 — 3 -
0= §(d31 +ds1 +dar + d61) + 2(d32 +ds2 + daz + d62) + §(d33 + ds3 + daz + d63)

For n=26,7,
fiu(0) = g;(0) = 1.
Hence
/ 813
= T 0.4987

We only need a crude lower bound for the real part of 9’. By direct calculation we have

R{O'} > — R{13} — 0.04 > 5.1,

0.4987

The contribution from 9 is minor since if z is close to 1/2, then for p = 1,2,
9,;(z) ~0.

Thus, by direct calculation we have the crude bound

|R{o}| <O0.1.

Combining these bounds with (10.16) we complete the proof of Proposition 2.4. O

Remark. Numerical calculation actually shows that

R{o} > 0.

11. Proof of Proposition 2.6

By the result of Section 9,
o K aP.

Hence, by Cauchy’s inequality, the proof of Proposition 2.6 is reduced to showing that

. > Clo ) ilp,w) = Z(p, x) Ja(1 = p, ) Pw(p) = o(aP). (11.1)

beV1 ped()

Let g1(y) and g2(y) be given by

0.502 0.504
Giy) = —500/ g< ) dz + 500 ( )
0.5 0.502

0.498 P?Dt 0.5 Pz Dt
Ga(y) = —500/ g( 0) dz + 500 < °> dz.
0.496 Yy 0.498
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Write -
jﬂ(SJw):ZMJ :U’:]-J27

and
ne = exp{£L "}

By (5) and (5), for ¢ = 1/2, the terms with n < P%5_ or n > P%%p, in J(s,1))
contribute < ¢.

Lemma 11.1. If

y € [PO'5T]+, P0'502’I7,] U [P0.502n+’ P0'50477,],

then gy )
F(128) - it < = (11.2)
if
y € (P0'577_, ’P0.577+) U (})0.50277_7 PO.502,I7+) U (})0.50477_7 PO'5O4T]+)7
then logy ) »
() - n <27 (113)

Proof. Since

1 —Llogx 1 9]
ol1fr) = = / exp(~t)dt = —= [ expl(tt)
—00 ogx

it follows that

g(x)+g(1/z) = 1. (11.4)
Write
_ logy
“= log P’

First assume 79592y, <y < P%%03. By (11.4),

2u—0.502 p*
gl — ) dz = u — 0.502;
0.502 Yy

0.504 J2&
/ g(—) dz = 1.006 — 2u + O(e);
2

u—0.502 Yy

/0.502 <PZ>
gl — |dz K e.
0.5 Yy
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by (6.2),

by (6.3),



These together imply (11.2).
Now assume P99 <y < P95y By (11.4),

0.504
PZ
/ g(—> dz = 0.504 — u;
2u—0.504 Yy

2u-0.504  / pz
/ g(—) dz = 2u — 1.006 + O(e);
0 Y

502
/0.502 (Pz)
gl — |dz K e.
0.5 Yy

These together imply (11.2). The proof of (11.2) with y € [P%5n,, P%%%?y_] is similar.
We give the proof of (11.3) with P%592p_ < y < P%592p, only; the other cases are
similar. We have

0.504 Pz> 1 0502/ pz
g dz=—+0(L! / g<—)dz=0£_10,
/0.502 ( ) 500 ( ) 0.5 Y ( )

by (5.2) and (5.3), and

by (6.2),

by (6.3),

log P
It follows from Lemma 11.1 that

f«<logy> =1+0(£71). O

Ji(s, 1) — Z X¢ f(logn/log P) — g1(n )) 4+ O(e) (11.5)

neJy

for o = 1/2, where
3y = (P%5q_, POSp, ) U (PO502y | pOs02, yy (oS0t posoty )

By (11.3), (8.25) and (8.26),

2. 2 Clov

2

Z Xw logn/log P) —ai(n )) w(p) = o(aP).

YeV1 peZ(y) n€Jy
Hence
ST N )| e, ¥) — Jilp. )| wlp) = o(aP).
YveY1 peZ(y)
Similarly,

Z Z C*(P>¢)|J2(Pa J2 (p, v }w = o(aP).

veVL peZ(y)
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The proof of (11.1) is therefore reduced to showing that

S > )| Aip. ) = Z(p xw) (1= p,9)| w(p) = oaP). (11.6)

veVL peZ(y)

Lemma 11.2. Suppose 0 = 1/2 and |t — 27ty| < L1. Then

j1(57¢) = Z(SaX¢)j2(1 - qujj) + O(E2(37¢))
where

E(s,1)) = L%

wi (1) dv.

Z ns—i—w

n<Pp

_[20

Proof. Suppose 0.5 < z < 0.504. In a way similar to the proof of Lemma 6.1, it can
be deduced that

S () = Lteovo) - 2t ZX e R )

Hence

[z ()

n

= ﬁL(S X¥) — Z(s, x¥) /00'5 { > X&(n)g<P2Dt°> } dz + O(By(s, ),

498 nt=s n

n

and

0.504 Xw(n) Pz
/0.502 { zn: n’ 9(7) } =
1 0.498

= sog L x¥) - (S’W)/OA% {Z nlf (PZDtO>}dz+O(E2(s,¢)).

This completes the proof. O
By Lemma 11.2; the proof of (11.6) is reduced to showing that

> C(p ) Ealp, )’ w(p) = o(aP).

YEVL peZ(4))

This follows by (8.25), (8.26) and simple estimates.
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. Evaluation of =5

The sum Hii(s, 1)) is split into

Hyi (s Z Z = Hyy(s,v) + Hi5(s,7), say.

n<Pl/2  Pl/2<n<P;

We can write

Hi(s,¢)Ha(s,¥) = B(s,¥) + His(s, ) Ha(s, ¥)
with

B(s,¥) = (Hia(s,¥) + taH1a(s,9)) Ha(s, ¥).
Accordingly we have
13 =S + S5

with
1= > Cp, ) Z(p, x) " Blp, ¥)w(p),

Zis= ) Y C(p)Z(p, xtb) Has(p, ) Ha(p, ¥)w(p).

VEYL peZ(y)

The goal of this section is to evaluate =Z15.

Write
. ( ): 1 i Be /0.504 5 B ﬂ "
1219 0.504 \ y 05 g Y g Y

I:—,15(37 b) = Z s1a(n)x(n) '

ns
PO-5p_<n<Ping

and

We first claim that

Z Z C P, |H15 pal/)) - ﬁlS(pa 1/})|2(,U(,0> = 0((177).

VEVL peZ(y)

By the argument in the last section, for P%%n, <n < Pyn_,

0-504 PZ) log P, — logn
g dz = ———— + 0(¢),
/0.5 < y log P €

so that
%12(%) — %1(71) L €.
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(12.1)

(12.2)
(12.3)

(12.4)

(12.5)

(12.6)



Also we have

L£-10 it Pn-<n< P,

ua(n) — i (n) K
12(n) = > (n) {1 it P%n_ < n < P%p,.

These bounds together with (8.25) and (8.26) imply (12.6). We briefly describe the argu-
ment as follows. Let t(y) denote the characteristic function of the interval (P%5y_, P%n,].

Ifd< P0'5(7]+ —1_), then
t(dl
Z (l ) < L710

I
If d > P%(n, —n_), then there exists at most one [ such that t(dl) = 1. Hence

1 t(dl 1 t(dl) _
> AT eEan e
d>P%5(ny—n-) ! ! d

Assume 0 = 1/2, |t —2nto| < L1 and 0.5 < z < 0.504. Using the proof of Lemma 11.2
with s 4+ (g in place of s we deduce that

Z(s + Bo, x) PY* UL (2D Pt
Hys(s,¢) = 0204 an P Be/ {g( n 0)_9( n 0)}dz

0.496

Write
P/ = P**Dt,, P} = P Dt,.

By (4) and (4), the terms with n < P/'n_ or n > Pyn, above contribute < . If
Plny <n < P,

then, in a way similar to the proof of (10.),

0-5 PY5 Dt P*Dt ]
/ {g( 0)—9( 0>}dz: e T —a—0.496 + O(e).
0.496 n n log P

Thus, in a way similar to the proof of Proposition 2.6, by the above discussion we deduce
that

S o) Z(pxw) His(p, ) — Hig(1 = 5,9)*w(p) = o(aP). (12.8)

VeV peZ(y)

where

Hlﬁ(l —s, &) _ 1 Z Xd}( ) (n/P//)ﬂe log (n/p//)

log P, , nt=s
P1 <n<P2
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By (12.7) and (12.8) we obtain
S5 = Z Z C*(p, ) His(1 — p, ) Ha(p, )w(p) + o(P).
VEVL peZ(y)
This implies, by Lemma 8.1,

15 = O1(a2, as) + O1(as, az) + o(P) (12.9)

where
ay5(n) = x(n)sxz(n)
with
(log Pl)*l(n/Pl”)*ﬁ6 log(n/P/) if P/ <n<Py,
%13(n) = .
0 otherwise,

a25(n) = a15(n).
Assume 1 < j < 3 in what follows.
Lemma 12.1. We have

Z x(1)z13(dl) T if d<P/T,
= o if PYT<d<P

and

{ dl L'(1, 1 -
gﬂgfg>:1%g%—1+@%—QWMWR%HM®%!WWN<mi
if Pl <d < Ps,.

Proof. Note that s3(n) < oy if P/'/T < n < P/T. In the case d < P} the results
follow by the Polya-Vinogradov inequality and partial summation. On the other hand, in
the case P/’ < d < P the sum becomes

(4/PY) " log(d/FY) L A/P o x(Dlogl o
log P, Z ll+66 6] log P, m + O(T )
I<P)/d I<P}/d
L'(1, d/ PP )
_EXIWRTR (5 ) loa(d/P) + O(L).

log P,

Since Py/d > T and (d/Py')P =1 — fslog(d/P]) + ..., the result follows by Lemma
5.8 and a simple estimates. O
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Lemma 12.2. If dr < P}'/T, then

D) ae3(dri)é; (1 d, r vy
Z x(1)z3( l)ﬁ]( ) = b*L'(1, \)TI(d, 7)(log P)B; 418542 + O (12.10)
with
) 1 0.004 swist
=m0, %=
If P')T <n < P/, then
Z X(l)%lg(dTll)gj(l;dv r) < ay: (12.11)

l

Proof. If P/' <n < Py, then

= _ ]' a 11\ Be—w
sz(n) = Tl P, 8w< n/Py')” ™" =0
Hence
x()zas(drl)é;(l;d,r) 10 11 B —w x(D§;(;d,r)
Zz: l a log P ow (dr/PY) Z [1=Petw fu=o-

P'/dr<I<Pj /dr
Suppose dr < P/'/T. By (4) and (4), for |w| = o we have

x()&; (L d,r) x(&;(l;d,r) Py P/ 15
Z A ]ﬁ6+w Z 1 J,86+u; 9 % —g dT’l +O(£ )

P /dr<I<P} /dr
X 5 ld r 11 s 1 sy W18 ds _
“ms [, (e ey — ey ) I o)

In a way similar to the proof of Lemma 8.4, by lemma 8.2 and 5.8, we find that the right
side above is equal to

1 / (s—i—w—ﬂ6+ﬁj+1)(s+w—56+ﬁj+2) (Pé’/dr)s - (Pll//d’r’)s ds
2mi Is|=5a s+w — [ s

+0(L71%)

ZL'(L X)H(d> T)5j+1/3j+2

L'(1,x)(d,r) -

(P /dr)?s™ — (P /dr)

B +0(L71).

It follows by Cauchy’ integral formula that

PO.004

yPo—w=l dy> lw—0+O(L7°)
P'/dr<I<Pj} /dr
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The main term on the right side is, by substituting y = P?, equal to

0.004
—(log P)? / 2e3™#/2 7.
0

Gathering these results together we obtain (12.10). The proof of (12.11) is similar to that
of .
Lemma 12.3. If P < dr < P,, then

x(D)zas(dri)&;(ld,r) — L'(1, )II(d, r)
Z [ N log P,

|€2j(d7’)| < 1075.

(= 14 (=206 + Bjs1 + Bjy2) log(dr/ P') + e;(dr)),

Proof. The left side is equal to

1 9 x()&; (L d,r)
/! 56 w #
“log P\ 0w <(dr/P D T ) le=o

I<PY /dr

Assume |w| = a.. In a way similar to the proof of Lemma 12.1, we deduce that

x(D&;(L;d,r)
> AOSELD o)
I<PJ /dr

y L (s +w—Bs + Bj1)(s + w — B + Bj+2) (Pélédr)s ds + O(L719).

27 J | s=5a s+ w — Bg

By direct calculation,

B (s +w—Bs+ Bjs1)(s +w— Bs + Bjya) (P /dr)® ds

271 |s|=5a 3+w—,@6 S

P Jdr
—w— s+ Bis + Braa + Brs1Bres / Yo gy,
1

and the derivative of

Py /dr
(dT/PIN)IBG_w (w - 56 + 6]‘-&-1 + 6j+2 + 6j+15j+2 / yﬁﬁ—w—l dy)
1

at w = 0 is equal to
Py /dr
(dr/P{")" (1 - 5j+15j+2/ gyl logydy)
1
Py /dr
_ (dr/Pl”)Bﬁ log(dT/Pl”) < — B6 + Bit1 + Bjs2 + ﬁjﬂﬁjﬂ/ yﬂa—l dy).
1
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This can be written as the form

— (=206 + Bj11 + Bjy2) log(dr/P{') — ey;(dr),

since (dr/PJ")% =1+ Bslog(dr/P}') + .... O
FEvaluation of ©1(ajz, ass).

We have

(d d
S;(ajg, ass) Z Z (@)l lpx(r |>\0] (dr) (Z x(m) (t35e3(drm) + Lasa( rm)))

dro(r ml=Bi

" (ZX n)sas(n )503'(”,6577"))_

The sum is split into three sums according to dr < P/'/T, P/'/T < dr < P/ and P/ <
dr < P,. By lemma 8.2, 8.3 and 12.1,the sum over P/'/T < dr < P/ contributes o(«);
the sum over dr < PJ'/T is equal to

[X(7) [ 20 (n) (zsﬂ6<P0-498/n> N ZJav(P“’/n)) + o(a)

', X)Qb*ﬁjﬂﬂjﬂ Z

n< P0.496 @(n)

0496 /7.5 (0,498 — 2af (0.5 —
—ab*(log P)f;418512 /0 (“”fﬂﬁ(o_ ez2) y uindS Z))dz+o<a>-
(12.12)

0.498 0.5

By lemma 8.2, 8.3 and 12.3, the sum over P/ < dr < P, is equal to

L'(1,x)%3 Z |X(n)|/\0j<n)]—“.6(P0'498/n)W-(n)
(0.504)(0.498)10g” P, oo e #(0) 7 ’

L'(1, %)% Z [X(n)[Ao;(n) .7-"j7(P0'5/n)Wj(n) + o(a)

(0.504)(0.5)log” P, o~ . ¢(n) .
als 0.498 .
= 6(0.498 — 2)W;(P?)d
(0.504)(0.498) log P /0.496 Fiol IW;(P7) dz
i7\U.0 — Z2)VV; z+ola).
(0.504)(0.5)log P o406 J

where
Wj(n) = =14 (=20 + Bj+1 + Bj+2) log(n/PY) + e2;(n).
For 0 < z <0.002, a good approximation to f;s(z) is

1+ mi(3 —7)z ~ 14 (286 — B;)(log P)=.
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Since
4B — B1 — o — B3 = 0,

it follows by simple calculation that

0.498
/ £,6(0.498 — 2)W;(P?) dz = —0.002 + €/10.
0

.496

For 0 < z < 0.004, a good approximation to f;7(z) is
14+ 7i(5—j)z ~ 1+ (287 — B;)(log P)=.
Thus, for 0.496 < z < 0.5, the function §;7(0.5 — 2)W;(P?) can be well approximated by
—1— (267 — B;)(log P)(0.5 — z) — (286 — Bj+1 — Bj+2)(log P)(z — 0.496).

Since
(286 + 267 — 1 — B2 — B3) log P ~ 2mi,
it follows that

0.5 )

i6(0.5 — 2)W:(P*)dz = —0. _n + €/10.

46(0.5 W;(P*)d 0.004
0.496 2502

inserting these results into (12.13), we find that the sum over Py’ < dr < P, is equal to

a 0002[3 _ 27TZI4
- —0.0087, — 4). 12.14
0.50410gP< 0.498 4= e e/ ) (12.14)

It follows from (12.12) and (12.14) that

1 2 3
%Sl(alz, 325) + aSQ(alz, 325) + 553(312, 325) = a(e*{ + 6; + 6/2) (1215)
where
€] = —mb"(3eq; + Gej, + 3eis)
with 0,496
o — / ’ 53f36(0498 — Z) 1 Z4fj7(0.5 — Z) d=
v 0.498 0.5 ’
and 4 0.002z, 2L,
. L3 _ Ty
5 = — —0.008z4 — .
= 0.504n < 0.498 " 9502 )

FEvaluation of ©1(ays, ass).
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We have

Sj(ans, ass) ZZ|X II% | Aoj (dr) (ZX mlm;,] )
« (Z x(n) (t3523(drn) + a3z (drn))&o;(n; d, r)>'

n

n

The sum is split into two sums according to dr < P/ and P/ < dr < P,. By lemma 8.2,
8.3 and 12.1, the first sum contributes o(«); the second sum is equal to

0.496
ab* / (23§;6(0.498 — 2) + 14§;6(0.5 — z)) dz + o().
0

By lemma 8.2, 8.3 and 12.3, the sum over P/ < dr < P, is equal to

L1, )% D)Moy () oo
(0.504)(0.498) logQPPOA%Z Ty 9P /mw ()
<n<P
GALERRRE DO s e
" (0.504)(0.5) logQPPOA%Z o) Gj7 (P77 /n)W;(n) + o(a)
<n<P
ais 0.498
= (0.504)(0.498) log P /0_496 0;6(0.498 — 2)W(P7) d=
ALy 0.5 s
T [0:504)(0.5) log P /0.496937( 2)W; (P7) dz + o(a).

where
W*(n) = =1+ (265 — ;) log(n/ ') + €1;(n).
For 0 < 2 <0.004 and p = 6,7, the function g;,(2) is well-approximated by
1 — (28, — Bj+1 — Bj+2)(log P)z.
Thus, in a way similar to the evaluation of ©(ajs, ass), we deduce that

1 2 3 _
—51(315, 323> + —52(315, 3.22) -+ —53(3.15, 322) = a(e;‘ + 6/2) (1216)
2a o' 2a

Finally, by (12.9), (12.15) and (12.16) we conclude

515 = (6; + 26; + E)Clp. (1217)
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13. Approximation to =4
In this section we establish an approximation to = .
Assume that ¢ € ¥; and p € Z(¢)). By Lemma 5.2 and (2.2),

C*(p, ) = —z'z(p+63,w)‘1L(p+5l’w)L(z,(+ ﬁ;’>w)L(p+ﬁ3’w)(1+O(1/to))
Py (13.1)

Lo+ B ) Lo+ By )L = p = By, V)
= T(p, ) (14+0(L7)).

By Lemma 6.1,

L(1—p—P3,¢) = L(p+ Bs,¥) = K(1—p—Ps,0)+Z(p+P3,1) " N(p+Bs, V) +O(Er(p+3, V),
and, by Lemma 5.1,

Z(p+ B3, )" = Z(p + Ba, ) H(pto)™ + O(L™1).

Hence

L(p + B2, ) L(1 — p — B3,9)
=L(p+ Po, V) K(1 = p — B3,0) + (pto) N(p + B3, ) L(1 — p — f2,1)) (13.2)
+ O(|L(p + B2, V)N (p + B3, ) L712°) + O(|L(p + Bo, )| Er(p + B3, 1))

By Lemma 6.1 and 5.1,

(pto)” L(1 = p = B2, ) =(pto) " K(1 = p = B2, 0) + (pto) " Z(p, )" N(p + B2, )
+ O(N(p + 627 ¢)£_123) + O(El(p + 527 ¢))
We insert this into (13.2) and then insert the result into (13.1). Thus we obtain

C(pow) == PR

oya Lot BLY) =B
— i(pto)” R N(p+ B3, ) K(1 = p— f2,1)) (13.3)

it 20,0 PN o o )N )
+O(E; (1)

where
Bi(po) =| FEEB B 1y 4 o e+ IN o+ a0 4 Bl )
N 'L(P + /31,Lllb<)p]\f;/>) + B3, %) ‘ (IN(p + Bos 0)|L712 + Er(p+ Bo, ).

74



Recall that B(s,) is given by (12.2). Multiplying (13.3) by Z(p, x¢) ' B(p,) and
applying Lemma 4.8 we obtain

C*(p, ) Z(p, x) "' B(p, ) = —i(Ki (p, )+ (pto) " K5 (p, 1) — (pto) * K5 (p, 1))+ O(E5 (p, )| B(p, 1))
where

Ki(p, ) = Z(p, x¢) ™ p, 0)K(1—p— fBs,9), (13.4)

L'(p, )
L _
K3l0.0) = 2o ) 20 B N4 K= = pad), (135)
L _
K3(p,v) = WB(@ V)G (0, V)N (p + Bo, V)N (p + B3, ) F(1 — p,ap),  (13.6)
Inserting this into (12.4) we obtain
Eiq = —i(P + By — P3) + O(E) (13.7)
where
=) ) Kipv (13.8)
YeV peZ(v)
=Y (pst)” Y Ki(p.v)w(p), (13.9)
eV PEZ(Y)
Oy =Y (psto)® > Kilp,d)w(p), (13.10)
YeET; PEZ(Y)
and
E=Y" Y Ei(p.0)|B(p,v)w(p).
YeW peZ(y)

Combining (2.34), Cauchy’s inequality, Proposition 7.1, Lemma 5.9, 6.1 and 3.3, we can
verify that

£ =o(P). (13.11)
For example, by (2.34),
e [
Yew; pEZ
we\y J(a)

the right side being estimated via Lemma 5.9, 6.1 and 3.3.
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14. Mean-value formula 11

Recall that we always assume 1) is a primitive character (mod p), p ~ P. Sometimes
we write p,, for the modulus p.
Let k* = {k*(m)} and a* = {a*(n)} denote sequences of complex numbers satisfying

K*(m) < 15(m), (14.1)

a'(n) <1, a*'(n)=0 if n>2P,. (14.2)
For g € C write

001 a0) = 3 5 [ zts oy (30 ) (0 R Yo s

Yew;
The goal of this section is to prove

Proposition 14.1. Suppose |B| < ba. Then

65,1 2) = iy S 33 S 5wt @) () + P

p~P d

Proof. We prove this proposition with § = 0 only, as the general case is almost
identical. Write ©y for ©4(0,k* a*). Similar to the proof of Proposition 7.1, in the
expression for O, we can extend the sum over W; to the sum over ¥, with acceptable
errors. Namely we have

9, = 3" L(w) + o(P) (14.3)

Pew
where
B0) = g [ (oo (30 ) (57 LU

- 271 J(1) - m -

Assume 9(mod p) € ¥. We use (2.5) with § = y1) and then replace the segment J (1) by
the vertical line 0 = 3/2 with a negligible error. Thus, by integration term by term,

() = T 3 3 I ()

m n

For (mn,p) = 1 we have




Note that (n,p) = 1 if n < 2Py and |7(xyp)| = VD. Hence, substituting d = (m,n),
m = dl, n = dk and inverting the order of summation we obtain

T o= et () () o
:% %: : K (dl) A (D;k) <”;k> +O(PT™®).

(here we have replaced the constraint (I,pk) = 1 by (I, k) = 1 with an acceptable error,
and used a bound for |A;(z)| = |A(x)| given by Lemma 5.3). Since

(1,k)=1

Dk_ b

1
— —_— dl1
P Dk + Dpk (mod 1),

(b))

with pp = 1(mod Dk). Hence

ooz TOOXD) = 1 @ (dR) o U YA
2. R === 00— Z <dl)A(Dpk)( Dk) (14.4)

+O(PT™).

it follows that

Assume (k,p) = 1. If (I,k) =1 and (I, D) = Dy, then (k, D;) = 1. Thus, substituting
(I, D) = Dy and | = Dqly, we find that the innermost sum in (14.4) is equal to

Iy lip
Z Z lil*b Dldll)A(Dgpk)e( ng)

D= D1D2 (l1,D2k)=
(D1,k)=

Inserting this into (14.4) and rearranging the terms we conclude

S by =" S S0y i)+ 0PT),

¥ ( mod p) D=D1D2

where

1 a*(dk) \ ! lp
Dl,DQ, ZE L Z: K (Dldl)A(DQPk)e(— Dzk)
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(here we have rewritten [ for I1). Since x(—1)7(x)? = D, the proof of Proposition 14.1 is
now reduced to showing that

ZX S(1, D;p)

—1)r 1 k)a*(dk » [

+ O(PQDl/ch)
and, for D = D1 Dy, Dy > 1,

Z X(p)S(Dy, Dy;p) < P*D'V?°. (14.6)

p~P

We first prove (14.5). Assume k < 2P, and (I, Dk) = 1. Then

e( Zl)pk) @(;k) S r@0-DAp).

S(1,D:p) = %Z “*g’f]g 3 T(e)e(p)zﬂ*(dz)e(—z)AQLM) (14.7)

d k ki ) 0( mod Dk) !

(here we have remove the constraint (I, Dk) = 1 as it is superfluous).
If 6 is the principal character %, , then 7(6) = u(Dk). The total contribution from
the 6 = 9%, term to the right side above is, by Lemma 5.3,

<<Z sz*b )(dl)a (dk)|‘A(D;k)‘<<P£C

which is admissible for (14.5). Now, let §} be the character (mod Dk) induced by the
primitive character x(mod D) which is real. Then

7(04)0,(0)0,(—1) = () x (k) x(—pl).

Hence




By the above discussion, to complete the proof of (14.5), it now suffices to show that the
total contribution from the terms with 6 # ¢%, and 6 # 6; in (14.7) to the left side of
(14.5) is O(P?D~¢). Namely we need to prove

SL Sl S | S @en v ()|
TR T e o l - g (14.8)

< P’D~©.

If §(mod Dk) is induced by a primitive character 6*(mod ), then r| Dk and |7(9)| < /7.

For r| Dk we have
Dk

TS O(mOd <Dl,)r>)‘

Thus, substituting Dk = hr, we see that the left side of (14.8) is

1 D " . _ l
<<Zdja > > Wg(;ﬂ Zm(dZ)G(l)Zxﬂp)A(W)‘.

1<r<2DPy h<P/r (1,h)=1 p~P
h=0(D/(D,r)) 0Fx

The range for r is divided into two parts according to 1 < r < D? and D? <r < 2DP,. In
a way similar to the proof of Proposition 7.1, for 1 < r < D3 we use the Mellin transform,
Lemma 5.4 (i) and Lemma 5.6; for D? < r < 2DP, we use the Mellin transform, Lemma
5.4 (i) and the large sieve inequality. Thus we obtain (14.5).

The proof of (14.6) is analogous. In the case D = D1 Dy, Dy > 1, the major difference
from the proof of (14.5) is that the constraint (k, D;) = 1 implies D { Dk, so that any
non-principal character #( mod Dyk) can not be induced by the real character y(mod D).
Thus, when the left side of (14.6) is treated in much the same way as (14.5), the main
terms involved in the proof of (14.5) do not appear. This yields (14.6). O

15. Evaluation of &,

Recall that ®; is given by (13.8). In view of (12.2), B(s, 1)) can be written as

B(s, ) = ZW—(H) (15.1)
with
b(n) < ma(n), b(n)=0 if n>PT ?n,. (15.2)
Write

(s + B1,V)L(s + Ba,9) —
L(S,'Lﬂ) B(87¢)K(1_S_ﬁ37¢)
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Similar to (8.1), for ¢» € WUy we have

S° Kilp w)ele) = I () — I3 () + Oc)
PEZ ()
where )
B =g [ K vt ds
Hence
© =Y (I (¥) - I; (¥)) + O(e). (15.3)
e,
First we prove that
S 17 () = o(P). (15.4)
Yev;

Assume ¢ € ¥y and s € J(—«). By (2.2) and Lemma 5.1,

L(s + B1,9)L(s + B2, V) L(1 - S—ﬁlyi/_})L(l_—S—ﬁzﬂm
L(s, ¥) L(1—s,9)
In a way similar to the proof of Lemma 8.1, it can be shown that the total contribution

of the O(L7'%) term to the left side of (15.4) is o(P). On the other hand, by (2.4), (2.5)
and the relation

= (pto) " Z(s,¥) (1+0(L7%)).

T(x¥) = 7(X)7(¥)¥(D)x(p),

Z(s,¢)
Z(s,x¥)
For 0 < 0 we can write
L(1— 5= B, 0)L(1 — s = B, V) K (1 — 5 — B, 9) 3 k(m)y(m)
L(1— s,1) B -

with k(m) < 74(m). Hence, moving the segment 7 (—a) to J(—1) with a negligible error,
we find that

S 1) =00 ¥ st g [ () B ats) o).

e, el =1

we have

= 700X(P)V(D)D* (1 +O0(e™™)).

In a way similar to the proof of (7.3), the sum over ¢ € ¥; can be extended to the sum
over ¢ € U, and then the segment J(—1) can be replaced by the line o = —1/2, with
acceptable errors. Thus the right side above is equal to

00 2 x(p) pto) ™ Z 27rz/1/2)( #)B(S’¢)w(s>d8+o(m'

p~P ( mod p)
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Since

L/ w(s)ds 1 (Dm)soexp{ L21og? D_m}
21 J(_1j9y n¥(Dm)=¢ Dm\ n

and, for n < PT~° and Dm < 2n,
* — f - D
N wmypomy < QP T
o mod p) 1 if n# Dm,

it follows that

> 27?@/1/2 <;%)B(Sa¢)w(8)d8<PD—4/?

¥ ( mod p)

This yields (15.4).
Let k1(m) be given by

C(s+ B1)¢(s + B2) Z/ﬁ(m

(s) e > 1.

m
Regarding b as an arithmetic function, for ¢ > 1 we have

L(s + P t)L(s + 5o 0)Bls0) _ 5 (o e D)m)u(m)
L(s,0) m

m

On the other hand, we can write
gs(n
K(]_ — S — 63, Z

with
9s(y) =y 9" (Pa/y).
Hence, moving the segment J(«) to J(1) with a negligible error, we obtain
> I (¢) = 0:(0,k],a}) + O(e) (15.5)

e,
with
ri(m) = (ki xb)(m),  ai(n) = gs(n).
It follows by (15.3)-(15.5) and Proposition 14.1 that

= ®1(p) +o(P) (15.6)

p~P

81



where

1 px(k) §~ gs(dk)
@ pu—
(0= Dy 2 o) 2
Assume dk < 2P;. Similar to (7.17),

(k1 #D)(dl) = > Y bldala)ri(dily).

d=dida I=l1l2
(l1,d2):1

PG b)(dl)x(l)A(D—pk). (15.7)

This yields

> (k= b)(dD)x (DA (Dpk> > Z b(dolo)x(l2) > ml(dlll)x(ll)A(g}l;).

(1,k)=1 d=dydy (I3,k)= (I1,dok)=1

The innermost sum above is, by the Mellin transform, equal to

L (2)( > mulzl})x(zl))(plfk)sé@) N 55

(l1,d2k)=1

Every [; can be uniquely written as l; = hl such that h € N(dy) and (I,d;) = 1, so that
/il(dlll) = Kl(d1h>li1(l>. Hence, for o > 1,

Z M =F1(dy; dak, s) Z s (D)x(l)

3 [s
(11,d2k)=1 (I, d1dok)=1
. L(s+ 81, x)L(s + Ba,
=7 (dy; dok, )\ (drdok, ) ( 51;87;) B2 x)
where P
Rl(dl;n S) = Z Hl(l—s)X() (]_59)
heN (d1)
(h,r)=1
. (1= xl@a~*) (1 = xla)~*)
I —x(g)g ) (1 —x(g)g
A(n,s) = . 15.10
() =11 1—x(q)g* ( )

qln
For notational simplicity we shall write %i(d;r) and Aj(n) for &i(d;r, 1) and Ai(n,1)
respectively. Note that Dpk/ly > T if Iy, < PT~2. In a way similar to the treatment
of (7.19), by Lemma 5.5, we see that the expression (15.8) is equal to the residue of the
integrand at s = p plus an acceptable error. Further, by (5.15), in the expression for this
residue, we can replace p by 1 with an acceptable error. Thus we have

Ll Dpk 0'"7(dy) Dpk
> maldl)x(WA( o ) =Ry 2PV i (dy: dok) M (dydok) + O 3(ch) Dp 7
(ll d2k‘):1 Dpk l2 12
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where

L(1+ B1, x)L(1 + B2, x)
1

R =
! L'(1,x)

5(1).

This yields

Z (m*b)(dl)x(Z)A(Dka) =R Dpk Z F1 (dy; dok) Ny (dE) Z b(dal2)x(l2)

(1,k)=1 d=d1d> (I2,k)=1 la
+ O(a™73(d1) Dpk).

Hence

D SR IINON
d

gs(didak) _ b(dsl [
:RTDkang(dldQ )m(d1;d2k))\1(d1dzk) Z ( 23))(( 2)
a1 da 152 (Ia,k)=1 2

Inserting this into (15.7) and rewriting d, [ and m for ds, [; and d; respectively, we obtain

D
- pZZ Dl d, 1) + o(P) (15.11)
where
Did )= Y px (k) 3 Fe1 (m; dk) My (mdk)Gs(mdk)
1\, e sp(k;) — m .
On substituting n = mk we can write
A1 (dn)gs(dn
Did ) =Y %&(n; 00) 1512)
with -
(n; d, 1) Z ad o) a(ms dR). (15.13)

(k1 l)

It can be verified, for given d and [, that & (n; d,l) is a multiplicative function of n. On
the other hand, we have

A (dn) = M (d) M (n, d)

H Ai(q)

aln
(‘Ld):l

with
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Hence ~ N
Di(d, 1) = M (d) Z Ai(n, d)éi(n; d, 1)gs(dn) .

n

n

On the right side above, we can replace the factor gs(dn) by (dn)?g(P,/(dn)) with a

negligible error. Since
y 9(P4> -5 / s ds,
Y 2mi Jay y° s+ 055

it follows that

D@ = w0 5 [ (5 G i Y) Bl 5) g4 o). s

27 nlts ds s+ s

n

Note that Xl(qr, d) = le(q, d) for any r. If 0 > 1, then

M(n, d)é(nd,l (g™ d, D)
Z ( )ss( ) H(lJr)\lq’ qu )

n

If (q,dl) =1, then

alea = 3 WO XD oy oy v+ 00/0)
heN(q)

so that

(L-g )1 —gq %) 3 §ilgd, 1) ~19/10
(1 =¢)(1 = x(a)g™) (1 Thled) Z R ) =1+0(7)

for ¢ > 9/10. In case (¢,dl) > 1 and o > 9/10, the left side above is trivially
1+ O(q—9/10>'

It follows that the function

oy S()L(s,x) M (n, d)& (n; d, 1)
Mi(d ) 1= e S8 s S e

is analytic and it satisfies

1(d,1; 5) <<H( 9/10)

qldl
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for 0 > 9/10. The right side of (15.14) can be rewritten as

b C(L+ s+ B)C(L+ s+ Ba)Mi(d, 11+ 5) Py wi(s + B5)

: ds + O(e).
2mi J () C(14+s)L(1+s,x) ds s+ B3 s +06)

Assume dl < PT~2, and (dl, D) = 1. Note that P,/d > T. In a way similar to the proof
of Lemma 8.4, we deduce that

Di(d, 1) = M(d) Y Rajd» Mu(d, ;1= B;) + Ofe1) (15.15)

J<3
where Ry;, 1 < j < 3, is the residue of the function

C(L4s+B)C(L+ s+ B2) P Bwi(s+ Bs)
C(1+s)L(1+s,x) s+ 3

(15.16)

at s = —f; (the function (15.16) also has a simple pole at s = p — 1, while the residue
at this point can be regarded as an acceptable error). Inserting this into (15.11) and
substituting n = dl we obtain

R:D
17D Z RUSU + O(p) (1517)

where

Si= Y S M @E DM, 11 5.

n=dl

If (q,dl) = 1, then \i(q,d) = \i(q,1) and & (¢";d, 1) = &(q"; 1,1) for any r. Hence

Mu(d,ls) 5 &(q"5d, 1) - ags1,1)\
ML 1s) }_d[l (1 + Ai(g, d) Z T) (1 + Mi(g, 1) Z T) . (15.18)

We can rewrite

Sij :Ml(lvl;l_ﬁj)zw (15.19)
with Mi(d,1;1— B,)
' _ B8, 1\, t; L — Dy

In view of (15.18), we see that wy;(n) is a multiplicative function.

Let
o= 1]«

q<D*
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Every n can be uniquely written as n = nyny with n; € N(Q) and (ng, Q) = 1. Hence

Zb(n)wlj(n): Z @1;(n1) Z w (15.20)

n n
n neN(Q) L mo=1

Using the the Rankin trick (see [14, Section 13.2], for example), we can impose the
constraint n; < T to the right side with an acceptable error O(gy). In addition, by
(15.18), for n < PT73, (n, Q) =1 and dl = n,

M = 1+ 0D
so that
@15(n) = x(n)gj(n) + O(72(n)D™°) (15.21)
where

0;j(n) = d¥x(d).

dln
The following lemma will be proved in Appendix B.
Lemma 15.1. Suppose ny € N(Q) and ny <T. Then

> b(nin)x(n)oj(n)

= x(n1)72(n1)e; + 0(0417'2(711))

(n.Q)=1 "
where
2]' = (61]' + L2€2j)(2363j + Z4€2j)
with 0 . .
jo 8 . ]
= (12 2 5mi /A —
€2 ( 5 " 25m') exp{5mi/4} = 55
27 J . J
(1T 0.747mi} — —
©8 ( 3 " 1.12057rz'> exp{0. 47T} = 1005
and

! "

2j J : J
/

=(1-Z . -

‘1 ( 3" 1.134m') exp{0-7367i} — 957

e, = ﬁ /0 T (exp{(3/2)(0.504 — 2)mi} — exp{(3/4)mi}) dz.

86



By (15.19)-(15.21) and Lemma 15.1 we obtain

Sy=eMi(LL1-5) Y X()7a(n w”() +0(1/L). (15.22)

neN(Q)
n<T

This remains valid if the constraint n € A(Q) on the right side is removed, since, for
DY<q<T,
0j(q) = 0;(q) + O(v(q)) < a1 +v(q).
This yields, by (15.21),
> xrmeyn) e

ngN(Q
n<T

To apply (15.22) we need two lemmas which will be proved in Appendix A.
Lemma 15.2. If|s — 1] < ba, then

1— —2
M= ] 27 o).
(g,D)=1 1

Lemma 15.3. For 0 > 9/10 the function

(g) 1 X(n)72(n)wi;(n)
Uil = e W

15 analytic and bounded. Further we have

D)2 1 — g—2)2
= SD(D—Z) (q][;)[—l 1(—X—(qcz)q)2 + Olen).

By (4.2) and (4.3),

S M) _ g Xy, (g) 1 O(an)

n<T

1 Tow,(s)d
=5 | CO+ L1+ 5,0 Uy (1 + g Len(s)ds
T (1) S

+ O(Oél).

By Lemma 15.3, we can move the contour of integration in the same way as in the proof
of Lemma 8.4 to obtain

3 X(”)T2(Z>w1j(n) = L'(1,x)°Us;(1) + O(en).

n<T
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This together with Lemma 15.2 and 15.3 yields

Mi(L11=5) Y X(">T2(Z>wlj(n) _ 2D)

neN(Q)
n<T

since (D) 6
4 ) q
— 1-— = — _

It follows by (15.22) that
D
Slj = eja% + O(l/£3>
By Lemma 5.8,
R = BiBL'(1,x) + O(1/L*)

and
Pf:s—ﬁj
(Bj1 = B7)(Bj+2 — B;) L' (1, x)

Hence, by direct calculation,

le -

RiRu = 1+ O(1/L),
RiR12 =2+ 0(1/L),
RiRys = 1+ O(1/L).

+0(1/L%).

Combining these relations with (15.23) , (15.17) and (15.6) we conclude

@1 = (21 + 2e9 + eg)aP + 0(73)

16. Evaluation of &,

Recall that ®, is given by (13.9). Write

KCo(s, ) = Z(s, Xﬂ})_l%

Similar to (15.3),

B(s, V)N (s + B3, ) K(1 — s — B2, ).

Gy = > (puto)™ (I () = I5 (¥)) + O(e)

Yev;

where

(15.23)

(15.24)



Note that the length of the sum B(s, )N (s+ f3,%) is < PT~!. For ¢ € ¥y, moving the
segment J(—a) to J(—L?) we obtain, by simple estimation,

Iy (y) <e.

Hence

By = > (pyto) I () + O(e).

e,
In a way similar to the proof of (15.6), we can move the segment J(«) to J (1) and then
extend the sum over W, to that over W with an acceptable error. Hence

L1
P, = Z(pto)ﬁ w(z )% /j(l) KCa(s, Y)w(s) ds + o(P). (16.1)

p~P mod p

Let ko(n) and by(n) be given by

Ko(n) (s + B1)
2 T

n

Note that

with

We can rewrite (16.1) as
(1)2 = @2(61a k; a;) + O<p)
with k5 = Ko * by and a3 = go. It follows by Proposition 14.1 that

0y =) (pto)” @a(p) + o(P) (16.2)
where
_ 1 px(k) x— g2(dk) o B
%0 = i S 22 T s @A () 63

Similar to (7.17),

3 (a x bl)(dDX(l)A(Dka)

(L,k)=1
Iy
— Z Z bi(dala)x(l2) Z KQ(dlll)X(ll)A(Dpk‘)'

d=d1d> (lQ,k):l (ll,dzk)=1
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The innermost sum is, by the Mellin transform, equal to

1 dql [ Dpk\®
e ( acl 1;)x( 1)>( lp ) 5(s) ds. (16.4)
TJ@) N ) daky=1 1 2
For o > 1,
ka(dyly)x(l . L(s + By,
D Rl ) _ 1 dk, )M (dydak, s) 2P0 X)
(Iy,dok)= 1 L(S7X)
1,d2k)=1
where P
P TN
hGN(dl)
(h,r)=1
and . @ 5
—xlg)g "™
Ao(n,s) = .
2{,5) g 1—x(g)q*

For notational simplicity we shall write &o(m;7) and Ay(n) for Ro(m;r,1) and Ag(n, 1)
respectively. Note that Dpk/ly > T if I, < P?. In a way similar to the treatment of
(7.19), we see that the expression (16.4) is equal to the residue of the integrand at s = p
plus an acceptable error. Further, by (5.15), we can replace p by 1 in the expression for
this residue, with an acceptable error. Thus we have

Il Dpk\ _ a'%7,(dy) Dpk
Z /ig(dlll)X(h)A 1—2 = R; —p :‘iQ(dl; dgk))\g(dlko’) + O 2( 1) P
(I1,d2k)=1 Dpk ly ly

where L+ B
* + 1, X
Ry = —————-0(1).
2 L/(LX) (1)
This yields
! » - by (dals)x (1
Z (RQ*bl)(dl)XU)A(D_pk) =R, Dpk Z R (dy; dak) Ao (dF) Z buldala)x(l2) 2;2) ()
(1,k)=1 Pl e
+ O(a™73(d) Dpk).

Hence

g2(dk) [
32 5 e ()

(1,k)=1

Ry Dok 3 3 P (i ST )

l
di  d (I2,k)=1
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Inserting this into (16.3) and rewriting d, [ and m for ds, [y and d; respectively, we obtain
R;3Dp b1 (dl)x (1)

o = 2= g 5 ————=Dy(d,l 1 16.5

2(p) QO(D) - l dl 2( ) )+O( ) ( )

where

m

k Ro(m; dk) o (mdk)gs(mdk
D2(d’l):(k%: ug((k))z (1m; dk) Ao (mdk)go (mdk)

On substituting n = mk we can write

Dy(a,1) = 3 I ¢ (16.6)
with Dk
Gnid )=y M;Ek; Foo(m; d). (16.7)
n=mk

(k,1)=1

It can be verified, for given d and [, that &(n;d,[) is a multiplicative function of n, and

Dy, 1) = rofd) 3 220 D5, Dl

» n
with .
Xa(n,d) = J[ Xale). (16.8)
(q:g)nil

Hence, similar to (15.14),

_ 1 Aa(n, d)&a(n; d, 1)\ Py wis + B)
Dg(d,l)—/\g(d)-% m(; gy ) s ds+O(g). (16.9)

It can be verified, for o > 9/10, that the function

C(s)L(s,x) Z S\Z(n, d)&y(n; d, )

Mald o) =0 ) ”

is analytic and it satisfies

Mo(d,l;s) < [ (1+ qg—flo>

ql|di
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Thus we can rewrite Dy(d, ) as

C (1+ 5+ B)Ma(d, ;14 8) P wi(s + Bs)

d .
" omi C(14+s)L(1+s,x) ds s+ B s +06)

Assume dl < P, and (dl, D) = 1. Note that Py/d > T. In a way similar to the proof of
(15.15), we deduce that

Dy(d, 1) = Xa(d) Y~ Rojd" My(d, 1;1 — B;) + Oler) (16.10)
j=1,2
where Ry, j = 1,2, is the residue of the function
s+B2
CA+s+5) P wi(s+ 5) (16.11)
C(1+5)L(1+s,x) s+ B
at s = —f3;. Inserting this into (16,5) and substituting n = dl we obtain
R5Dp
Py (p) = —2 R2;Sa; + o(p 16.12
2(p) (D) ;;2 2iS2; + 0(p) (16.12)

where

Sy Z ZAQ (d)d% x (Y Ma(d,1;1 — B;).

n=dl

Let M3(s) be given by

M;(s) = Ma(L, 15s) if x(2) # 1,

B 1—q* 5 LlenL1)Y _
2H1—q X(Q)Q‘s)(HA?(q’l); q ) =1

q>2

The following result will be proved in Appendix A.
Lemma 16.1. Suppose dl < PT~2 and |s — 1| < ba. Then

M;(s) =p + O(1/L")

where

_ 1 _x@y
p_Hl—x(q)q‘l(l q—l) f X #1L

q

_ 1 o x@y _
_2H1—X(Q)q1<1 q—l) fx@=t

and




As a direct consequence of Lemma 16.1 we have |[M¥(s)| > 1 if |s — 1| < ba. Thus

we can write
Soj = M3(1—=5) ) bu(n)o(n) (16.13)

n
n

with

Note that wsy;(n) is multiplicative. In a way similar to the proof of (15.20) we have

261(”)7723‘(”) -y @3;(n1) 3 bl(nlnilwzj(erO(DC).

n n
n meN(©@ b (n,Q)=1

n1<T

Assume n; € N(Q) and ny < T. For (n, Q) =1 we have

) = Y > () g (T )b(mlm).

ni=limi n=Ilm

Hence
bi(nin) w2] wzj T b(mym)wa;(m) .
2 = Y Y e () X et o)
(n,Q)=1 ni=limy (1,0)= 1 (m,Q)=1

since the terms with (I,m) > 1 above contribute < D~¢. Further, for (m, Q) = 1 and
m < P we have trivially

@y;(m) = x(m)ol(m) + O(r2(m)D~°).

Hence, for m; < T,

= ¢;x(m1)72(m1) + O(D™°)

Z b(mlm)WQj(m)
m
(m}Q):l
by Lemma 15.1. It follows that

Z b1(n1n2;ﬂ2j(n) — ¢ Z x(mi)72(my) Mg (T2) +0(D™°). (16.14)

Bs3
(n,@)=1 ni=lim (1,0)=1 l(lll) il

On the other hand, if 1 <1 < T° and (I, Q) = 1, then for any ¢|!,

02; (1) < a1 + O(v(q)).
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Thus the innermost sum in (16.14) is equal to 1 + O(1/L"). It follows that

Z bl(nlnzlwm'(n) _ 2j Z X(ml)TQ(ml) —|—O(1/£4).

(n,9)=1 mi|ni

Since 1 % x7o = v % x (here 1 denotes the arithmetic function identically equal to 1), it
follows that

yhmEn) v =l o, e
. n meN(Q) "

On the right side above, the constraint n; € N(Q) can be removed with an acceptable
€ITOr.
The following lemma will be proved in Appendix A.

Lemma 16.2. The function

(s) = 1 wa;(n) (v * x)(n)
Uil = L = w

is analytic and bounded for o > 9/10. Further we have

6 o(D) q
w2 Dp qg+1

Uy; (1) = O(1/L%).

q|D

We have
>y @ (n) (v * x)(n) _ 3 @y (n) (v * X)(")g<%> Lo(1/£9)

n n
n<T n

27?2/ C(L+8)°L(1 4 5, x)°Us; (1 + 5) T wn (s )d_+0(1/£10)

The contour of integration is moved in the same way as in the proof of Lemma 8.4. Thus
the right side above is, by Lemma 16.2, equal to

L'(1,x)*Us; (1) + O(1/L*) = E@L’(l, X) +O(1/LY).
Hence, by (16.15),

Z bl(n):% (n) _ a;] 90(,?) L/( ) + 0(1/54)

n
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Inserting this into (16.13) and applying Lemma 16.1 we obtain

Saj = aej"p(é»ﬂ(l,x) +0(1/L£%Y). (16.16)

On the other hand, by Lemma 5.8 and direct calculation,

1
* 10 = 6 G
R2_61+O(1/£ )7 RQ] 61L/(17X> +O(£ )7 J 1727
so that ]
* —— *1L/ 1 -1 )
RQRZJ L/(17X) + O(E ( 7X) )

This together with (16.16) and (16.12) yields

Dy(p) = —(e1 + e2)ap + o(p).
Since (pto)? = —1 + O(ay), it follows by (16.2) that

(I)g = (81 -+ eg)aP + O<P) (1617)

17. Evaluation of &3

Recall that ®j3 is given by (13.10). Write

Kalo ) = £ 0 0G5, 0N (s + B N5 + ) P15,
and .
) =g [ Kl wets)ds
Similar to the treatment of ®,, we have
®s = wZ\P (poto)™ (I (¥) = I; (1)) + O(e). (17.1)

To treat the sum of I} () we move the segment J () to J(1), and then extend the
sum over Wy to the sum over ¥ with an acceptable error. Hence

D (puto) I (¥) = (pto)* @5 (p) + o(P) (17.2)
Yev; p~P
where .1
5 (p) = Z Py Ks(s,¢) w(s) ds.

Y mod p 2 J1)
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For o > 1 we can write

L(s + B1,1))
L(s, )

B(s,¥)G(s,V)N(s+ PBa, )N (s + [3,9) = Z M

mS
Thus, replacing the segment 7 (1) by the line 0 = 3/2 and integrating term by term give
vi(m)v(n) [ n\™ * - n
o) =3 ¥ (2 (X wmi ) e { - ctogt 2 )+ 0
m  n<D* mod p
By trivial estimation, the contribution from the terms with m # n above is o(p). Hence
w5 =p Y T o) (173)
n<D*

Note that for n < D*

v'(n) = Z ka(n1)x (nans) (50 (n2) + tasa(n2)) (t35e3(n3) + iazea(n3) ) v(na) Go (ns) Gs (ne).-

n=ni..ng

A detailed analysis shows that (17.2) remains valid if, in the expression for v*(n), the
factor ko(nq)is replaced by (1 % p)(ny), the factor

X(nang) (31 (n2) + 1230(n2)) (T33¢3(n3) + tases(ns))
is replaced by egx(nsn3) with
eo = (3a(1) + 12509(1)) (E355(1) + ia3ea(1)), (17.4)
and the factors go(ns) and gs(ng) are replaced by 1 respectively. Since
ITxpsysxyxy*xv*xlxl=up,

it follows that

®F (p) = eop Y /) o(p). (17.5)

n
n<D4

The following lemma will be proved in Appendix B.
Lemma 17.1. We have

Y ”(Z)Q = a+o(1)

n<D*
Since (pto)? = —1 + O(ay), it follows by (17.5), (17.2) and Lemma 17.1 that
> (poto)* I () = —eaP + o(P). (17.6)

Pew,
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To treat the sum involving I, (¢)) on J(—«) we first apply Lemma 5.1 to obtain

L(s+p,v) _ g, L(L = s = B, 7)) o

for ¢» € ¥; and s € J(—a). Thus, in a way similar to the proof of (15.4),

S (ot 1 ) = Y te) g | Ko ves)ds +ofP)

21
Pel; Yew,

where

L(]_ — S —51,¢)
L1— 8777/;)

Ks() = F(1—5,9)B(s,9)G(s, ¥)N(s + Ba, ¥)N(s + B3, ).

Moving the segment J(—«) to J(—1) and then extend the sum over ¥; to then sum over
¥ we obtain

Y (puto)I; () = Y (pto)*®; (p) + o(P) (17.7)
Yev; p~P
where .
0= 3o [ Kiutds
Write I
G(s, )N (s + B2, )N (s + P3,10) = Zl: M
so that .
B(s, ¥)G(5,¥)N(s + B2, ¥)N(s + Bz, ) = > | (b ”1>(8”>1/’<”).
- n
On the other hand, for o < 0,
L1 —s—B1,%) _ = Ra(m)o(m)
L(1—s1) ; mi-s
with Re(m) = k2(m), so that
L(1—s—p1,¢) 0" (n)(n)
L(1 — s5,7) P =sv)= - ni=s
with
0'(n) = Y v(l)Rs(m)
n=Ilm
I<D*



Note that the arithmetic function (bx* })(n) is supported on n < PT2. In a way similar
to the proof of (17.3) we deduce that

) =p Y LI o) (173)

We have

bxvy)(n)o*(n v(l bxvy)(Ilm)ka(m
Z( )7(1)@(): E)Z( )(m) (m)

n I<D4 m

The inner sum is equal to

l1m1 V lgmg)liz(mlmg)
)IDIEDS o

I=l1lz m1 (ma,l1)=1

Note that v;(n) is supported on n < T°. On the right side above, we can drop the terms
with mge > 1 or (my, Q) > 1 with an acceptable error. Hence

Z (b * V1 Z Z Z b(lymy) Vl lg)lig(ml) +o(1),

n I<D* I=lila (m1,Q)=

If m; is square-free, then
Ra(mi) = p(ma)er(ma).
Hence, by Lemma 15.1 (see (15.)),

> b{lumy)Ra(m1) _ erx(h)m(h) + O

(m1,Q)=1 m

It follows that

Z (b*yl) Z Z ll ’7'2 ll Vl l2) +0(1>

n I<D4 I=l1l2

In a way similar to the proof of (17.5), by Lemma 17.1, we find that the right side is equal
to

e 24 V<ll)2 +o0(1) = era+o(1).

Inserting this into (17.8) gives
©;5 (p) = erap + o(p).
Since (pto)? = 1+ O(ay), it follows by (17.7) that

> (poto)® Iy () = e1aP + o P). (17.9)

PeW,
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Finally, from (17.1), (17.6) and (17.9) we conclude

By = (0 + ¢1)aP + o[ P). (17.10)

18. Proof of Proposition 2.5

By the discussion at the end of Section 2, it suffices to prove (2.32) and (2.33).
Proof of (2.52).
By (12.3), (12,17), (13.7), (15.24), (16.17) and (17.10),

513 = C3u77 (181)
with
c3 = —i(3e; + 3ea +e3 +eg) + €] +2e + €.

In view of (15.), we can write

with
2;- = (e'lj + LQ€2j)<Z3€3j + Z462j)
e;»' = Glllj(Z;J,ng + Z4€2j).
By calculation (there is a theoretical interpretation),
(3¢ + 3¢5 +e3) +ef =€
Hence
c3 = —i(3e] + 3¢}, + e + e) + 2€5 + 2e.

Direct calculation shows that
R{c3} < —6.9951 (18.2)

It follows from (8.24), (9.8) and (18.2) that
¢+ ¢+ 2%{&3} < 0.001.

This with together (8.23), (9.7) and (18.1) yields (2.32).
Proof of (2.533).
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By Lemma 8.1,

. D Nipd)Pwlp) = 2R{O1(azs, as} + o(P). (18.3)
)

YeV peZ(Y
We have
d )| Aoj (dr (m) f (log(drm)/log P
S;(ags, ass) :Z zd: Xt )H/;Z(O(za‘) ( )(Z X ( il*ﬁj - ))
y <Z X(n)f( log(drn)illog P)&]j (n;d, 7’))

n

The right side is split into three sums according to
dr < P0.5 P0.5 <dr < P0.502 PO‘502 <dr < P0.504

By the discussion in Section 8 and 10, the sum over dr < P%5 contributes o(«); the sum
over P%5 < dr < P%592 i5 equal to

(5OOL’(1,X))2 3 [x(1)[Ao;(n)

log P o(n) ( — 1 — B;log(n/P™ )) ( -1+ yu(n)) + o(a);

P0.5< < P0.502

the sum over P%?0? < dr < P%5% j5 equal to

(SOOL’(LX))2 3 X ()| Aoj(n)

log P (1= B;log(P**™ /n)) (1 + W1;(n)) + o).

P0-502 <y PO.504 gp(n)

The factors §;log(n/P%?), B;log(P%%/n) and Y;;(n) in the above sums make minor
contribution. If we disregard these factors, the major contribution to S;(ass, ass) will be

500L/(1, %)\ IX(n)[Aoj(n) _ 1000a
( log P ) 2

p(n)  logP +ole).

PO.5 <n<PO'504

Thus we have the crude bound

1100a
%{Sj(a237a23)} < log P’
so that 1 2 3 4400
a
%{%Sl(azm ags) + 552(323, ass) + 553(3237 323)} < p

This yields (2.33) by Lemma 8.1 and Proposition 7.1. O
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Appendix A. Some Euler Products

This appendix is devoted to proving Lemma 8.3, 15.2, 15.3, 16.1 and 16.2. For nota-
tional simplicity we shall write

Proof of Lemma 8.3. Note that

Akm, s) = Mk, s)\(m, k; 5)

v (= )1 = o)1 — o)
- 1— g P)(1—qg=P)(1—qg=P
A k:s) = .
(m7 ?S> H 1 _ qis
qlm
(¢,k)=1

For given d and h, the function Am, h,d;1 — B;)€;(m;d, h) is multiplicative in m, and
A", k;s) = Mg, k; s) for any r. Thus, for o > 1,

uj(dv h; 'S) = A(dhv 1 - ﬁj) Hﬁ(dv 17 S;Q)

with
: N (1—X(Q)Q‘S‘5f“)(1—X(q)q‘s‘ﬁf“)( 8 A x(qr)fj(qr;d,h))
Ti(d, h, s;q) = Y 1+X(q, dh; 1 @)Zj e .
Since

Na;d, 1= Bi)x(@)&(q"d, h) = x(@)(s(q) — %) + O(g™")
= x(@) (g + ¢ —1)+ O(¢7),
we have T;(d, h, s;q) = 1+ O(q~/?) for 0 > 9/10, so U;,(d, s) is analytic in this region,
and
Ui(d, by s) = Mdh, 1= 8;) [ T5(d, b, s3.9) + O(D™).
q<D
Since
p(dh)?

)\(dh, 1-— ﬁ]) = W + O(Oél)

and T;(d, h, s;q) = 1 if ¢|D, the proof is reduced to showing that

Ti(d,h,s;q) =1+ O(alogq/q) if (q,dh) =1, (A1)

101



1 .
Tild b, s3q) = 7—— +Olaloga/q) if qlh, (A.2)

and

1—u—ou
(1 —ou)(1—u)

Ti(d, h,s;q) = +O(alogq/q) if q|d (q,h) =1, (A.3)

provided
|s—1| <ba, g< D and (¢,D)=1,

which are henceforth assumed. We discuss in three cases.
Case 1. (q,dh) = 1.

We have N
Rl g™

&i(q", dh) = k(¢ dh, 1 = B;) — 1

because r(q"t;dg, 1 — ;) = k(¢"'). Note that

Ii(qr) _ Z q#151+#252+u353 _ Z qu151+u252+ﬂsﬂ3 =7y ( )(1 + O(Oﬂ’ log Q))
H1tp2+p3=r p1tpetpus=r—1

where p1, p1o and p3 run through non-negative integers. Hence

i(q", dh) ; r+n+1l)u ——1_ + O(arlogq/q) = =) + O(arlogq/q).
It follows that
x(q " d, h) 1 1
Z (1—u)2(1—vu 1>+O(a10gq/q).

This together with the relations
Ma, dh; 1= ) = (1 —u)* + O(alog ¢/q)

and
(1= x(@)g* %) (1 = x(q)g*%+)
1—x(q)g®

=1 —vu+ O(alogq/q),

yields (A.1).
Case 2. q|h.

We have
§i(q",dh) = k(q") =r + 1+ O(arlogq/q),
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so that

ZX Gdh) _ =1 ! — 1+ O(alogq/q).

1 —vu)?

This yields (A.2) since A(g,dh; 1 — ;) =
Case 3. q|d, (q,hy) = 1.
We also have S\(q, dh;1— ;) =1 and

k(g™ ! r
" an) = nla’) = D = - s Olariogaa),

so that

Z 6 gj q Lop (1 —1vu)2 -1 (1-— U)Q(Mf— vu)? + Olaloga/e)

This yields (A.3). O

To prove Lemma 15.2 and 15.3 we need several prerequisite results. In what follows
assume dl < P, (dl,D) =1 and |s — 1| < 5a. We have

st = [T Gt ) (e S0

=p =) =x(@)a™) (A.4)
x (1+0(D™)).
Note that
Fi(q" " dg) = ka(q™"),
so that “
ia(qd) — X0 ()i (q,0) =1
fl(qr; d, l) _ /fl(qrv ) q—1 "fl(q ) 1 (Q> ) <A5>
F1(q", d) if gl
for any ¢, d, [ and 7.
Proof of Lemma 15.2. By (A.4), (A.5) and the relations
8 (I—g*M-g*") 1-¢" (aIOg q)
A qr, 1I)=A q), = +O )
D =MD TS S e T .
it suffices to show that
1/ . 09, . 1—x(q)g ' 1= x(q)q?
L) Y (a1 - MO8, oy ) LM Lo
q q—1 I—gq I—gq
r (A.6)

N O<alogq>
q
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if g < D, (q,D) =1, and

L+ M\(q) Z % (/?61(% 1) — %Q)fffl(qr_l)) =71 _1q1 + O(alogq) (A.7)

q

T

if q|D.
Assume ¢ < D. Since

/ﬁ(qr): Z q—ﬂlﬂl—u2ﬂ2_ Z q_Hlﬁl_HQﬁZ’

H1tp2=r p1tpz=r—1
where p; and po run through non-negative integers, it follows that
k1(¢") = 14 O(arlogq)

if ¢" < P. Hence

. k1 (q"h)x(h h
b= Y 1(g h)x( ) _ 3 X(}L)+O<ar10gq):
heEN (q) heN(q)

+ O(arlogq).
1 —vu

It follows that

> q}ﬂs (r?ol(ff,l) - —X(qmm(qu)) = < L 1fu) + O(alogq/q).

qg—1 1 —u\1l—vu

r

This together with the relation
A(g) =1—vu+ O(alogq/q)

yields

L) 3 o () = X)) = 2= = Ofatogafa)

r

It is direct to verify that

1wl -vu) 1-x(@g'1-x(gq?

1—u (1—-u)?2  1-—gqt! 1—q2

if x(¢) = £1, and
1 wv(1 — vu) 1
1—u (1—u)2  1—gq!

if x(q) = 0, whence (A.6) and (A.7) follow. O
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Proof of Lemma 15.3. We give a sketch only, as the situation is similar to Lemma
15.2. it can be verified that the factor U;;(q, s) in the Euler product representation

ul] Hulj q,s

satisfies Uy;(q,s) =1+ O(¢"*) if (¢, D) = 1. Further, in the case ¢ < D we have

Uj(q,1) =1 —q ") +0(ar/q) if ¢|D,

and . s
(1-q¢77) N

i) =1 g

O(ai/q) if (¢,D)=1.

This completes the proof. O
Proof of Lemma 16.1. For any q, r, d and [ we have

fQ((]T’d l) _ R2(qr,d) - %K}Q(QT_1> if (Q>l> =1
Y Fa(q"; d) it q|l,
|ko(q")| = |q’ﬁ1 — 1] < alogg, 5\2((], d) =1+ 0O(alogq/q).
Hence
pd, 1)
1+ Ao(q.d Z&q —1_;((Tq)+0(a10gQ/Q) if (¢,0)=1
and

- T‘.d l
1+ Xa(q,d) Z &(qu% =14+ 0(alogq/q) if gl

On the other hand we have

1—g> " B 1
0= —x@r")  I-x(@q T oelsd/o:

It follows that

o) = 1 ~ x(g) 1 o
Mol sy = 1] 5= x(@)g! (1 q— 1) g 1—x(q)q 0l

q<D
(g,h)=1 qll

It is direct to verify that in either case the assertion holds. O

Proof of Lemma 16.2. We give a sketch only. If dl < D, (dl, D) =1 and |s — 1] < 5a,

then
Mg(d, l; S)

M;(s) = HQ(Z) + O(CleQ(dl))
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with

m() =] (1- 2%) it x@ =120

q _—
qll
q>2

(1) =0 if x(2)=(,2) =

The assertion follows by discussing the cases x(2) # 1 and x(2) = 1 respectively. O

Appendix B. Some arithmetic sums

Proof of Lemma 15.1. Put

= p(d)d*.

dln

First we claim that

5 IQj(n);@;*(n)!<<£8.

n<P
(n,Q)=1

Since x = p * v, it follows that

) = uta) + O S vin).

hld
h>1

Hence

0j(n) — gj(n) < E h)Te(n/h).
h|n
h>1

If h>1and (h,Q) = 1, then h > D* Hence, by substituting n = hm,

> Bl g 5 B gy 3 M)

n<P h>D* m<P/h Di<h<P
(n,Q)=1

This together with Lemma 3.2 yields (B.1).

Next we claim that
s lo@l s
n

n<P
(n,Q)>1
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Note that g;(¢") = 0j(¢) for any r, and p;(¢) < alogq if ¢ < P. Thus the left side above

< ( 3 M) T (1 + lo@)l/a+ 01/¢) <a 3 287,

q<D* q<P q< D4 q
This yields (B.2).
d (

By (B.1) and (B.2), for u = 2,3,

3 #u(ll) Qﬂ =y A L oL,

(1,9)=1 l

We proceed to prove theassertion with p = 2. Since

o;() _  <(s)

= Cs=5)

_ 1 (£/m)* .
#(m) = 271 /1) (log P2)(s — [37)? as,

for o > 1 and

it follows that

mo(hil)oi(l) 1 ¢(1+s) (P/1)* s
Z l - 2mi /(1) C(1+s— ;) (log Po)(s — B7)? ds.

In a way similar to the proof of Lemma 8.1, we see that the right side is equal to the sum
of the residues of the integrand at s = 0 and s = (3; plus an acceptable error. By direct
calculation, the residue at s =0 is

B8
B2 log Py 2571

+ O(ay);

the residue at s = f7 is, by the Cauchy integral formula,

¢(1+ Br) 1og(132/l1)(§>57+ 1 (&)67i C1+s)
C(1+67_5]) 10gP2 ll IOgPQ ll dSC(l"‘S—ﬁJ)

:(1 _2 8—‘77”) exp{bmi/4} 4+ O(on).

s=pr

These together complete the proof in case u = 2. In case u = 3 the proof can be obtained
with B¢ and Pj in place of 87 and P, respectively. The same argument also gives

LD (1 2j ' '
> M - (1 B ?j 1 1§4m‘) {07567} — g5 + Olen)

l 1.134me
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For ;1 = 1 the proof is therefore reduced to showing that

5 m(zlll)@j<l> _ 0556 /  (exp{(3/2)(0.504 — 2)mi} — exp{(3/4)mi}) dz + O(an).
I>P2/l : 0

(B.3)
By (4.2) and (4.3), the left side of (B.3) is equal to

Be 0.504 z 0.5
— — — | = —_— d o) .
zl: z (lll o501 . V\ar) 9\ ) p Ol

By a change of variable, for 0.5 < z < 0.504,

RGN Iy e ——"
Y Y Y 21 (1) (5 — fo)

Hence, in a way similar to the proof of, we find that the left side of (B.3) is

1 o {L/ (p66(0.504—z)st _ P0.004BGP0.53> ¢ +s) wils—fo)ds }dz +0
0.504 Jo5 27 Jo C(L+5—=0;) U(s—fe)

_ 1 &/0_504 (P56(0.504—z) _P0.004ﬁ6) dz+0(a1) 0
0.504 35 Jo 5 '

Proof of Lemma 17.1. By Lemma 3.1,

DR z%g(g) +ol1).

n< D4

The sum on the right side is equal to

s [, (T ) e

Assume o > 1. We have

L)

If x(p) =1, then (see [19, (1.2.10)])

LSS ) = (- ) ) -
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if x(p) = —1, then

Y ey

—~ p

s = (I—p ) ' =1-p) 21 —xp ") 2QA-p ™)

if x(p) =0, then

LMY S ) = ) ) )

r

Hence

S a0 T -0 [0 o).
n (p,D)=1 p|D

In a way similar to the proof of, by (A) and simple estimate, we find that the integral
(14) is equal to the residue of the function
Towy(s)

s

C(L+sPL+s0* J[ @=p20 )0 —p )

(p,D)=1 p|D

at s = 0, plus an acceptable error O, which is equal to

) [[a-p) A -pHa=p)" +o(l) =ato(1). O

P p|D
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